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Coarse-grained dynamics of ac-driven two-state systems
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Summary. — Magnus expansion is used to identify effective Hamiltonians de-
scribing the coarse-grained dynamics of more complex problems. Here, we apply
this method to a two-level system driven by an AC field. We derive Stark and
Bloch-Siegert shifts of both diagonal and off-diagonal entries of the Hamiltonian as
a result of coarse graining only.

1. – Introduction: effective Hamiltonian by Magnus Expansion

The Magnus expansion is a mathematical tool allowing one to express the solution of
a linear differential equation as an exponentiated series. In particular, the time-evolution
operator U(t, t0) = −e−i F (t,t0) solving Schrödinger equation U̇(t, t0) = −iH(t)U(t, t0)
with initial condition U(t0, t0) = 1 is expressed as a series F (t, t0) =

∑
i Fi(t, t0) where

(higher-order terms can be found in ref. [1])

(1) F1 =

∫ t

t0

dsH(s), ; F2 = − i

2

∫ t

t0

∫ s1

t0

ds1 ds2 [H(s1), H(s2)].

The small expansion parameter is related to [H(t), H(t′)]. The F1 term yields
the average Hamiltonian [2], while F2 provides already an excellent approxima-
tion in many cases. Coarse graining over a time τ is obtained by approximating
U(t + τ/2, t − τ/2) ≈ e−iHeff (t)τ , where the effective Hamiltonian is obtained by
truncating the Magnus series, Heff(t) =

1
τ [F1 + F2 + . . .]. The coarse-grained dynamics

is then expressed as Ueff (t, t0) = T exp
{
−i

∫ t

t0
dsHeff(s)

}
. If [H(t′), H(t′′)] is sufficiently

small for t′′ �= t′ ∈ [t+ τ/2, t− τ/2], the effective Hamiltonian involves few terms of the
series and it is expected to be simpler than the original H(t).
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We validate the approximation via fidelity F(t)=min|ψ0〉(| 〈ψ0|·U †(t)Ueff(t) |ψ0〉
∣∣2),

which is a simple unitarily invariant figure of merit directly referring to the dynamics.

Analytical expression F = Tr
{
U † Ueff

}
holds for a two-state system.

2. – Results for ac driven 2-level atom

We consider a two-level system with Hamiltonian H0 = − ε
2 σ̂3 driven by a monochro-

matic ac field H1 = HRW +HCR with corotating HRW = W ei ωtσ++h.c. and counterro-
tating HCR = W e−i ωtσ++h.c. terms. In the interaction picture, H̃(t) = eiH0tH1e

−iH0t

the two lowest-order terms of the Magnus expansion are calculated

H̃
(1)
eff =

W

2

(
e−i δt sinc

δτ

2
+ e−i (ε+ω)t sinc

(ε+ ω)τ

2

)
σ̂− + h.c.,(2)

H̃
(2)
eff =

{
− W 2

4

[1− sinc δ τ

δ
+

1− sinc(ε+ ω) τ

ω + ε

]
− W 2

4
e 2i ωt

[ sincωτ

δ(ω + ε)
(3)

−
( sinc(δτ/2)

ω + ε
e−i(ε+ω) τ/2 +

sinc[(ε+ ω)τ/2]

δ
eiδ τ/2

)]
+ c.c.

}
σ̂3,

where δ = ε − ω is the detuning. Since ω, ε > 0 we can eliminate the fast dynamics
by choosing τ � π

ω ,
2π
ω+ε , meaning that the sinc(x) terms are very small except possibly

those containing δ. These latter can also be neglected if δτ � 2π. In this case H̃
(1)
eff ≈ 0

while H̃
(2)
eff ≈ − 1

2 [SRW + SBS ]σ3, where Stark shift SRW = |W |2/(2δ) and diagonal

Bloch-Siegert shift SBS = |W |2/2 (2ω + δ) [3] appear. This result is self-consistent if we
can choose τ � 2π/SRW , such that the effect of the shifts on top of the bare dynamics
is apparent. Thus the approximation holds only if δ/W � 1, i.e., for large detuning.

The dynamics determined by Heff conserves populations of the eigenstates of σ3

accumulating a dynamical phase between them. We validate this result by the fidelity
(see fig. 1(a)) with respect to the exact dynamics, evaluated up to relatively large times
which amplify the effect of errors in the dynamical phase. Values of the parameters are
chosen in order to test the limits of our approximation, as the quite large W /ω = 0.5
and not so large δ/ω = 3. It is seen that F � 0.95, the error being due to small changes
in the populations. We also plot the fidelity for the rotating wave approximation (RWA)
H = HRW showing that the diagonal SBS cannot be neglected.

Notice that if we let δ → 0 in eq. (3) we would obtain H̃
(1)
eff → H̃RW while in H̃

(2)
eff

terms containing δ vanish. Therefore, it is tempting to take Heff = − 1
2 SBS σ3 +HRW

as often done in the standard treatment of quantum optics [3]. However, this guess
is not always accurate: in fact at resonance a new term appears which renormalizes
W . The calculation is carried in a rotating frame defined by transformation Ux(t) =

e−iH0te−iH̃RW t. In this frame the Hamiltonian is H̄(t) = U †
x(t) H̄CR(t)Ux(t) and we use

it to evaluate the first two terms of the Magnus expansion. Letting ω > W > 0 we choose
2π
W � τ � 2π

2ω−W . Thus, the first-order term averages out while at second order slowly
varying terms are retained, obtaining

H̄
(2)
eff = −S′

BS

2
σ1 −

SBS

2

1− (W /2
√
2ω)2

1− (W /2ω)2
[
e−iW t |+〉〈−|+ h.c.

]
,
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Fig. 1. – Fidelities for the Magnus effective Hamiltonian at second order for W /ω = 0.5. (a) For
δ/ω = 3 and compared to the RWA. (b) At resonance, compared with the RWA plus diagonal
SBS and with the CHRW method [4, 5].

where |±〉 are eigenstates of σ1 and the off-diagonal Bloch-Siegert shift is defined as

S′
BS =

W 3

16ω2[1− (W /2ω)2]
.

This result is self-consistent only if we can choose τ � 2π/S′
RW which implies that it

must be W /ω � (32)−1/3. Transforming back to the interaction picture we recover the
more familiar structure

H̃eff = −1

2
SBS σ3 +

1

2
(W − S′

BS)σ1.

Contrary to what previously guessed, this result shows that the field amplitude is renor-
malized by “off-diagonal” shift S′

BS . The fidelity for our Heff and for RWA plus diagonal
SBS guess which neglects “off-diagonal” S′

BS is shown in fig. 1(b). We choose W /ω = 0.5
which is demanding for our approximation. It is clear that in this regime S′

BS cannot
be neglected. This may be surprising at first sight since in regime W/ω < 1 we consider
SBS ∼ W 2/ω larger than S′

BS ∼ W 3/ω2, but it can be understood by noticing that both

shifts appear at the same order of W /ω in the eigenvalues of H̃eff .

3. – Conclusion

We studied the dynamics of a two-state system driven by a monochromatic ac classical
field with both corotating and counterrotating components. This problem has been
tackled in the past by several accurate and elaborated analytic methods. We show that
a satisfactory and analytically solvable effective Hamiltonian can be found by deriving
the coarse-grained dynamics, with no further basic assumption. Coarse graining was
operated approximating the dynamics in short time intervals via the Magnus expansion.
Our results agree with those obtained by more elaborated methods [4, 5], as also shown
in fig. 1 for the CHRW method of refs. [4,5] at first order in W /ω. The advantage of our
approach is that it relies only on coarse-graining and it can be extended to more general
instances, as slowly varying field amplitudes and frequency chirping [6], multitone drives
and multilevel systems [7, 8], operations in devices with realistic noise [9]. In view of
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the accuracy we obtain for relatively large values of W we expect that extensions of our
method to quantum fields may provide accurate effective Hamiltonians for atom-cavity
systems in the ultrastrong coupling regime [10, 11], which are a subject of large interest
in Condensed Matter physics and Quantum Technologies.
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