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Radiation squeezing in interacting quantum Hall edge channels
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Summary. — A mesoscopic system emits microwaves when subject to a periodic
drive in the GHz range. The quantum features of this emitted radiation, such as
squeezing, can be accessed by measuring the finite frequency photo-assisted noise in
a quantum point contact geometry. In this context, we theoretically investigate the
robustness of these quantum properties against electron-electron interaction using
quantum Hall edge channels at ν = 2 as the testbed.

1. – Introduction

In recent years, electron quantum optics emerged as a very active topic in the con-
densed matter agenda [1-3]. It aims at transposing conventional quantum optics concepts
to describe electrons propagating in mesoscopic channels. However, electrons strongly
differ from photons due to their statistics and their charged nature. This dramatically
emerges in Quantum Hall (QH) systems at ν = 2, where screened Coulomb interaction
leads to phenomena such as charge fractionalization and energy relaxation [4,5]. In this
direction, Levitons, purely electronic wave-packets generated through properly quantized
Lorentzian voltage pulses in time [6], show a major robustness as indicated by current
fluctuations (noise) analysis [7-9].

The study of finite frequency noise at the output of periodically driven quantum
point contacts (QPC) has also revealed a deep connection with the fluctuations of the
microwave radiation emitted by driven mesoscopic devices [10, 11]. This quantum ra-
diation shows squeezing in the frequency domain, which can be properly engineered by
controlling the form of the applied drive [12]. A key ingredient to obtain such squeezed
light is the presence of non-linearities which are typically observed in the current-voltage
characteristics of a QPC geometry in the presence of interaction [13-15].

Accordingly, in this theoretical work, we will show that the squeezing of the radia-
tion generated by a periodic train of Levitons remains relevant also in the presence of
interaction, even if suppressed with respect to the free electron case [16].
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Fig. 1. – Schematic view of a QH bar at filling factor ν = 2 in the QPC geometry. Top left:
zoom of interacting region of length L where the injected charge is fractionalized. Top right:
schematic inset view of the two-filters set-up.

2. – Model

We consider a QH bar at filling factor ν = 2 (see fig. 1). The electronic excitations are
injected through a time-dependent voltage source Vin(t) modeled as an ohmic contact
coupled to the inner channel. For the rest of this work we will focus on a periodic train
of Lorentzian voltage pulses with period T and width w = ηT . Its AC contribution is

(1) V
(AC)
in (t) =

Ṽ

π

+∞∑
l=−∞

η

η2 + ( t
T − l)2

− Ṽ ,

with Ṽ the amplitude of the AC part, while with V
(DC)
in we indicate its DC part.

After the injection, the excitations flow along the inner channel which interacts with
the outer one through a short range Coulomb repulsion over a region of finite length L.
Following Wen’s hydrodynamical description [17] the behaviour of these edge states is
described by the Hamiltonian density

(2) H =
∑
i=1,2

vi
4π

(∂xφi)
2 +

u

2π
∂xφ1∂xφ2,

where the the chiral bosonic field φi(
1) is related to the particle density operator ρi

through ρi(x) = (1/2π)∂xφi(x) [18, 19]. The first term describes the bare propaga-
tion along the channels, while the second is the coupling contribution. It is possible
to diagonalize eq. (2) through a rotation of an angle θ in the field space such that
tan (2θ) = 2u/(v1 − v2). This angle is related to the strength of interactions and is
limited to the 0 ≤ θ ≤ π/4 interval. Physically, this diagonalization leads to a fractional-
ization process where a fast charged bosonic mode is separated from a slow dipolar one.
These fractionalized charges enter the QPC region, which is assumed as non interacting

(1) Label i = 1, 2 denotes inner and outer edge channels as indicated in fig. 1 after the two-filters
set up.
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and whose tunneling process involves only the inner channels. After the QPC, a two-filter
set-up is used in order to access the current fluctuations at finite frequency [20].

3. – Current fluctuations and electromagnetic quadratures

In the two-filter set-up shown in the right inset of fig. 1, the current of inner channel
I1 outgoing from the QPC is filtered at two different frequencies ω and kω0−ω(2). These
contributions are multiplied among themselves and further multiplied with an external
sinusoidal signal of the form cos (kω0t+ ϕ). From this point on, we consider the driving
frequency (ω0) and the measurement one (ω) in the GHz range. According to this, it is
possible to access the dynamical response of the noise at finite frequency ω defined as

(3) χ(k)
ϕ (ω0, ω) = lim

Tm→+∞

1

Tm

∫ +Tm
2

−Tm
2

〈I1,ω(t)I1,kω0−ω(t)〉 cos(kω0t+ ϕ) dt,

where the brackets indicate the zero temperature quantum mechanical correlator.
Furthermore, the current operator can be related to the emitted electromagnetic

field annihilation operator through the simple relation a(ω) = −iI1(ω)/2A(ω), where
A(ω) = GF�ω with G is the conductance of the channel and F is the Fano factor.
Through this relation, the electromagnetic field quadratures can be written as

(4) Aϕ(ω) =
1√
2
[eiϕI1(ω) + e−iϕI1(−ω)].

Then, the finite frequency noise is linked to the quadratures’ fluctuations of the emitted
electromagnetic field through

(5) ΔA2ϕ =

√
χ
(0)
0 (2ω, ω) + χ

(1)
2ϕ (2ω, ω),

where ΔAj =
√

〈A2
j 〉 − 〈Aj〉2. Finally, due to the Heisenberg principle, the quadratures’

fluctuations satisfy the uncertainty relation which states that

(6) ΔA2ϕΔA2ϕ+π ≥ A(ω).

4. – Results and conclusions

The effects of radiation squeezing results from eq. (6). Indeed, when the value of
the fluctuations of one quadrature decreases below the quantum vacuum, the other must
increases in order to preserve the uncertainty relation. In fig. 2 we show how Coulomb in-
teractions affect squeezing of the two orthogonal quadratures when Levitons are injected
into the channel through a periodic drive in the GHz range. They lead to a reduction of
the minima of the two orthogonal quadratures with respect to the non-interacting case.
However, it is worth noticing that, even for an interacting system, the squeezing effect
still remains remarkable since it is well below the quantum vacuum.

(2) Where k ∈ N and ω0 = 2π/T .
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Fig. 2. – Quadratures of the emitted e.m. field in units of A(ω) as a function of the number

of injected electrons q = eV
(DC)
in /�ω. The two panels describe the orthogonal quadratures 〈A2

0〉
(red) and 〈A2

π〉 (green) for a Lorentzian voltage drive with η = 0.1 in the non-interacting case
θ = 0 (left) and in the interacting one θ = π/4 (right). The dashed horizontal line indicates

vacuum fluctuations. Other parameters are: eṼ /�ω0 = 0.856, L = 2.5μm, v2 = 2.8 × 104 m/s,
v1/v2 = 2.1 and ω0/ω = 2.

In this work we have shown that the outgoing radiation from a mesoscopic set-up is
strongly non-classical presenting single-photon squeezing even in the presence of interac-
tions when Levitons are injected into the system. This quantum feature is reduced with
respect to the non-interacting case but it is still evident for a Lorentzian voltage drive.
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