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Summary. — Chromatin organisation undergoes various structural changes during
the entire cell life. The spatial arrangement of chromatin within the nucleus is not
random, but how its architecture varies during cellular processes is still partially un-
known. The aim of this work is to provide an automatic tool to quantify chromatin
compaction from three-dimensional (3D) fluorescence microscopy images. We de-
veloped a tool to compute several morphological and statistical measures on stained
nuclei. Furthermore, the nucleus is clustered, thus identifying different compactness
regions. This workflow paves the way for biologists to study how chromatin struc-
tures form and behave in various cellular processes, by providing a parameter-free
and automatic numerical quantification method of chromatin compaction.

1. – Introduction

Nuclear architecture and chromatin remodelling are the main regulators of cell identity
and fate. In particular, chromatin spatial organisation is a well-orchestrated mechanism
and its inappropriate regulation is the cause of many diseases, such as cancer [1]. Nev-
ertheless, the molecular mechanisms involved in chromatin compaction are still partially
unknown [2]. Fluorescence microscopy facilitates access to chromatin organisation at the
nanoscale by optical means [3], allowing investigating how the 3D structure influences
genome function. Indeed, 3D image stacks of stained nuclei, carrying information about
chromatin, can be obtained by means of a confocal microscope. However, a method to
quantify chromatin compaction from such images is required [4]. The aim of this work
is to provide an original automatic tool to quantify chromatin compaction, in terms of
numerical values related to fluorescence intensity, measurable from 3D images of stained
nuclei. Since it is quite common to have multiple stained nuclei in the same Field of
View (FoW), the first required task is nuclei segmentation [5]. This problem can be
approached with several algorithms [6,7]. Among all possible techniques, training a neu-
ral network offers the highest degree of generalisation. Moreover, no expertise in data
analysis is required, since it is a parameter-free method. For these reasons, we have
applied the random forest algorithm [8] coupled with the watershed [9] method, in order
to separate the nucleus of interest from both the background and other nuclei which
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may be present in the FoW. Several morphological and statistical analyses are performed
on each segmented nucleus. The underlying hypothesis is the following: the higher the
number of fluorescent molecules, the higher the number of photons collected and the
greater the compaction [10]. In general, this hypothesis is not always true, since high
concentration of fluorescent molecules can lead to self-quenching, with a reduction of the
recorded fluorescent intensity. Alternative and more sophisticated approaches based on
FLIM (Fluorescence-Lifetime Imaging Microscopy), e.g., FLIM-FRET [11], have been
developed in the past by our group. However, these suffer from the need of very com-
plex, high-cost and dedicated instrumentation, not available in any biology laboratory
studying chromatin. A numerical value for the compaction can be thus calculated. More-
over, we cluster the nucleus, thus identifying different compactness regions. Finally, the
tool is tested on confocal images of nuclei where the DNA is selectively marked with a
fluorescent dye.

2. – Methods

The tool is implemented in Javascript, compatible with ImageJ and its 3D Suite [12].

2
.
1. Segmentation. – In this study, the segmentation purpose is twofold: we want to

separate the nuclei from the background and from other nuclei eventually present in the
same FoW. Since the first issue is related to difference in intensity while the second is
related to shape, we decided to split the algorithm in two steps, as described below.

In order to classify the background and the nucleus, we apply a multi-threaded version
of random forest, as set out by Fran Supek [13]. So far, 200 trees are generated, the depth
of each tree is unlimited and the number of simultaneous threads used for computation
is set equal to 8. The user can train the machine giving some examples, in other words,
labelling some voxels as background or nucleus. A pre-trained model is also available.
The features taken into account have been selected in such a way as to discriminate
locally between plate-like, line-like, and blob-like image structures. The training features
included were: Gaussian blur, derivatives, Hessian, Laplacian, structure (eigenvalues of
second-moment matrix), edges (detected using the Canny algorithm [14]), difference of
gaussians, mean and variance. By applying the trained classifier to any stack of images we
obtain a mask, i.e., a binary image. If holes are present in the output of the segmentation,
they will be filled.

Once nuclei and background are distinguished, if there is more than one nucleus in
the FoW, we will apply the watershed algorithm [13] on the segmented image in order
to split them. The plugin works with two steps, namely: the former is aimed to select
the seeds and can be obtained from local maxima, the latter is a thresholding step. Only
seeds with values greater than a preset threshold will be used. A second threshold is
used to cluster voxels with values greater than the threshold. If the centres of the two
separated nuclei are too close, they will not be split. This minimal distance has been
set up equal to 10 voxel (this value has to be chosen accordingly to the pixel size of the
image). In this way, the Region Of Interest (ROI) is labelled by a mask.

2
.
2. Numerical analysis . – We calculate metrics both directly on the mask, obtain-

ing morphological measurements, and on the raw voxel values belonging to the mask,
obtaining statistical metrics on intensities. As concerns the morphological information,
the following measurements on the selected nucleus are computed: volume V and surface
S, expressed in μm3 (calibrated unit) and in number of voxels (uncalibrated unit); the

compactness, defined as 36πV 2

/S3, which is dimensionless and maximized by a sphere
with a value equal to 1; sphericity, that is the cube root of compactness. Moreover, a 3D
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ellipsoid is fitted to the object. The values taken into account are: the three radii and
their ratios, the calibrated volume of the ellipsoid and the ratio between the ellipsoid
volume and the volume of the object. As concerns the statistical analysis, we computed
the integrated density, i.e., the sum of the intensities, the mean, the standard deviation,
the minimum, the maximum and the median of the fluorescent intensity values. The
chromatin compaction is calculated as density, i.e., as the fraction between the inte-
grated density and the calibrated volume. Finally, in order to have a comparable value
of chromatin compaction between different nuclei, we normalise it with the sum of the
intensities divided by the maximum intensity and the uncalibrated volume.

2
.
3. Cluster analysis . – In order to better study the organisation of chromatin in the

nucleus, the ROI is clustered in a tunable number of sub-ROIs, thus identifying different
compactness regions. We apply the k-means algorithm [15] with the Euclidean distance
identifying four clusters: the background and three levels of compaction.

2
.
4. Sample preparation and imaging . – We tried our tool on SKNBE2 neuroblastoma

cells. Cells were grown on RPMI 1640 medium (Sigma-Aldrich) with 10% fetal bovine
serum (FBS) and maintained at 37 ◦C. After reaching the correct confluence, the cells
were fixed with 4% paraformaldehyde in 0.1 M phosphate-buffered saline for 15 min.
Then, the cells were incubated with Hoechst 33342 to detect the nuclear structure. Fi-
nally, the slides were sealed and 3D images were acquired with a Nikon A1R MP confocal
microscope.

3. – Results

We tested the tool on images acquired as detailed in sect. 2
.
4. The results obtained

through the segmentation and clustering elaboration are represented in fig. 1 for one
particular nucleus (as an example), where a piece of the stack and the full 3D volume are
plotted. While, as regards the numerical analysis, a subset of the metrics in output is
presented in table I for four different nuclei. In particular, we reported (as an example)
the volume, the surface, the compactness, the integrated intensity and the normalised
chromatin compaction.

Fig. 1. – Example of 3D image stacks of stained nuclei, where DNA is selectively marked by
fluorescent dye (Hoechst), analysed by the tool. Panel (a) shows the input raw data, panels (b)
and (c) are, respectively, segmented and labelled images, while panel (d) is the clustered nucleus
where colours represent low (blue), medium (green) and high (red) compaction.
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Table I. – Examples of morphological and statistical measurements.

Vol. [μm3] Surface [μm2] Comp. Int. Den. [A.U.] Ch. Comp [%]

491.037 555.945 0.156 174.799 0.382
795.796 718.160 0.193 207.240 0.186
635.421 646.754 0.169 198.359 0.307
639.721 640.639 0.176 175.071 0.263

4. – Discussion

The major strength of this trainable tool is its generality. Indeed, it is possible to
train the neural network to classify whatever type or part of a nucleus under study.
Another important advantage is given by the absence of parameters to be set. This
helps obtain objective quantification and measurements, not dependent on (heuristic)
parameters decided by the user. Moreover, this makes the tool user-friendly, especially for
people with no experience in data analysis and machine learning. Further improvements
can be devoted to optimisation of segmentation and clustering analysis. For example, a
better separation between nuclei and an automatic selection of the number of clusters
can be implemented. Indeed, if two nuclei overlap too much, division could not be ideal,
as in fig. 1(c). To conclude, the strategy in this work allows automatically performing
different kinds of analyses, both morphologically and statistically, on stained nuclei.
Thanks to the different output metrics of this method, a true comparison between two
or more families of cells becomes easier than using other approaches. Moreover, by
providing a numerical quantification of chromatin compaction, which impacts on gene
expression, this workflow opens the way for biologists to study how chromatin structures
form and behave in various cellular processes, from physiological to pathological ones,
including cancer transformation, and finally can help understand the underlying genomic
mechanisms.
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