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Summary. — A Recurrent Neural Network-based approach has been adopted for
the classification of the production mechanisms in the search of heavy resonances
decaying in two bosons. The search is performed using proton-proton collision data
recorded with the ATLAS detector from 2015 to 2018. The investigated final state is
semi-leptonic, where one boson decays in two leptons and the other decays hadron-
ically. No excesses have been found in data with respect to the background-only
hypothesis. Upper bounds on the production cross sections of heavy scalar, vector
or tensor resonances are derived in the mass range 300–5000GeV.

1. – Introduction

The Large Hadron Collider (LHC) [1] is a unique facility for the search of heavy res-
onances that can be directly produced via different mechanisms, such as gluon–gluon fu-
sion (ggF), Drell-Yan (DY) or vector-boson fusion (VBF) (Feynman diagrams are shown
in fig. 1). The channels considered consist in the resonance decays into pairs of vector
bosons (VV, where V is either W or Z), where one of them decays leptonically (W → lν,
Z → ll or Z → νν) and the other decays hadronically (W/Z → qq′), here l denoting
either an electron or a muon [2]. According to the number of charged leptons, three
different channels are identified (0-, 1- and 2-leptons). Reference models are Randall-
Sundrum (RS) models [3], predicting a neutral scalar Radion, the Heavy Vector Triplet
(HVT) framework [4], parameterizing a heavier version of Standard Model (SM) spin-1
W (W′) and Z (Z′) bosons and bulk RS models [5], which predict the existence of a spin-2
Graviton. The hadronic boson decay is reconstructed either as two separate small-radius
jets (small-R jets) or as a single large-radius jet (large-R jet). The reconstructed VV
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Fig. 1. – Production mechanisms and decays in two vector bosons of the X resonance.

transverse mass or the VV invariant mass are used for signal-background discrimination
via maximum-likelihood fits. The investigated mass range is 300–5000GeV, the search
is performed using data collected by ATLAS [6] during the LHC Run-II (from 2015 to
2018), with a pp collisions center-of-mass energy

√
s = 13TeV, corresponding to an in-

tegrated luminosity of L = 139 fb−1. Expected SM background processes are W and Z
boson production in association with jets, top-quark production, non-resonant diboson
production and multijet production. This analysis exploits a four times larger data set
and introduces innovative multivariate techniques with respect to the previous round of
the analyses with 36 fb−1 [7, 8].

2. – Event selections and results

The search starts from the selection of the leptonic boson decay. Events are clas-
sified into two exclusive VBF and ggF/DY categories, according to their production
mechanism, by a Long Short-Term Memory Recurrent Neural Network [9]. Finally, the
hadronically decaying boson (Vh) is identified. Multiple signal regions are defined in
order to enhance search sensitivities, and the analysis flow is run twice, once for Vh = W
and once for Vh = Z. The production mechanism is targeted considering the different
number of jets between VBF and ggF/DY processes, since in the latter there are two
additional jets well separated in pseudorapidity and with a large dijet invariant mass
(fig. 1). In this search the classification task has been assigned to a RNN, since it is
well suited for a variable-length input sequence such as the number of jets in the event.
It is built with the Keras library using the Theano python library as a back end for
mathematical computations. The RNN has 2 hidden layers with 25 recurrent cells to
exploit the hidden correlation of the input sequence. It takes in input the four-momenta
of the small-R jets, and returns the probability for the event to be VBF-like (fig. 2(a)).
Training is performed on 1TeV scalar resonances in the 2-leptons channel and applied
on the three leptonic channels, the three resonance models and all resonance masses. An
event is classified as a VBF event if its RNN score is >0.8, otherwise as a ggF/DY event.
This Machine Learning (ML) approach allows recovering events with only one VBF-tag
jet reconstructed (30% of signal events), not selected in the previous searches where two
VBF-tag jets were required. In fig. 2(b) efficiency of the RNN score cut as function of
the resonance mass is shown.

The hadronic boson decay is first identified as a single large-R jet and the “merged”
regime is defined by applying a simultaneous pT -dependent cut on its mass and the D2
variable [10]. In the case the event does not pass the merged selection, the boson decay
is reconstructed using two small-R jets. The “resolved” region is defined by applying a
fixed mass window on the dijet invariant mass spectrum for V or W decay because the
dijet mass resolution is largely independent of the dijet pT for the resonance masses to
which the resolved analysis is sensitive.
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Fig. 2. – (a) RNN score for simulated signals and (b) efficiency of the RNN score cut as function
of the resonance mass, for both VBF and ggF production [2].

The fit is performed simultaneously on the mass distributions in the final regions in
each leptonic channel using a binned likelihood function.

A profile-likelihood-ratio test statistic is used to test the compatibility of the
background-only hypothesis and the observed data, and to test the signal-plus back-
ground hypothesis, with the cross section as the parameter of interest.

A good agreement is found between the observed mass distributions and the esti-
mated post-fit background contributions in all regions and limits on the production cross
section are calculated (in fig. 3 limits obtained for HVT Z′ and gravitons are shown).
When possible, these limits are translated into resonance mass lower limits by comparing
them with theoretical cross section predictions. They are found to be significantly more
stringent than those published previously from similar searches [7, 8].

Fig. 3. – Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on
the ggF/DY and VBF production cross section for HVT Z′ ((a) and (b)) and gravitons ((c) and
(d)) [2].
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3. – Conclusions

A Recurrent Neural Network has been adopted in the search for heavy resonances
decaying in two bosons for the classification of production mechanisms. The RNN allows
recovering events with a single VBF-tag jet, increasing the VBF event selection efficiency
from 10% (5%) at 0.5TeV to 60% (50%) at 3TeV for a scalar (spin-1 or spin-2) resonance
compared to the previous cut-based selection, with similar background rejections.

The first combined result of diboson searches in the semi-leptonic final states
(lνqq, llqq, ννqq) has been obtained using the pp collision data recorded at LHC Run-
II with the ATLAS detector, corresponding to an integrated luminosity of 139 fb−1 at√
s = 13TeV [2]. Data are found to be in good agreement with background predictions.

Upper limits on the production cross section of heavy resonances in the mass range 300–
5000GeV through gluon-gluon fusion, Drell-Yan or vector boson fusion processes are
derived for SM extensions with an additional neutral scalar, a heavy vector triplet, or
warped extra dimensions.
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