
DOI 10.1393/ncc/i2022-22093-8

Communications: SIF Congress 2021

IL NUOVO CIMENTO 45 C (2022) 93

Identification of electrons from B meson decays at the CMS
experiment

A. Belvedere(1)(2)

(1) INFN, Sezione di Roma I - Rome, Italy

(2) Dipartimento di Fisica, Sapienza Università di Roma - Rome, Italy
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Summary. — A new electron reconstruction algorithm has been developed at the
CMS experiment to test the lepton flavour universality in B meson decays after
the discrepancy with the Standard Model highlighted by the LHCb experiment. In
this report, the development and the test of the performance of the identification
algorithm for this new type of electrons are presented.

1. – Introduction

In latest years, lepton flavour universality has been extensively tested using processes
involving B mesons. One of the most interesting results is the measurement by the LHCb
experiment [1] of the RK ratio,

(1) RK ≡ Γ(B± → K±μ+μ−)

Γ(B± → K±e+e−)
,

that shows a deviation of 3.1σ with respect to the Standard Model expectation of RK =
1.00± 0.01.

Unlike the LHCb, the CMS experiment is designed to identify particles with high
transverse momentum (pt > 15GeV), while final state particles produced by B meson
decays have very low pt. For this reason, a new technique to collect a high number
of B meson decays (B-parking [2]) and a new algorithm, called low-pt, to increase the
reconstruction efficiency of low transverse momentum electrons have been developed.
The low-pt algorithm requires looser conditions than the standard electron reconstruction
algorithm. In this way, the number of low pt electrons reconstructed increases, however
also the mistag rate increases and therefore an identification algorithm is necessary to
ensure the purity of the sample.
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2. – Electron identification algorithm

To develop the low-pt electron identification algorithm, a Machine Learning ensemble
method called XGBoost [3] is used. This classifier exploits ensembles of decision trees
to distinguish between categories of particles, in this case between particles correctly
reconstructed as electrons and fake electrons. The XGBoost algorithm is trained on a
Monte Carlo simulation of the decay B± → J/ψ(e+e−)K± because this process has the
same final state as the one involved in the measurement of RK (eq. (1)).

The particles reconstructed as electrons are divided into two categories depending
on the ΔR distance (ΔR =

√
Δη2 +Δφ2) between the reconstructed electrons and the

electrons at the generator level produced by the decay of a J/Ψ:

• Signal: ΔR < 0.03

• Background: ΔR > 0.1

These two sets of simulated data compose the dataset used to develop the electron
identification algorithm. The dataset is then divided into three independent sub-samples
to train and measure the performance of the algorithm:

• Train set : set of data used to train the algorithm.

• Validation set : set of data used to test the performance of the algorithm while
searching for the best hyperparameters and features.

• Test set : set of data used to test the algorithm performance when the best set of
features and hyperparameters had been already chosen.

The test set represents the 20% of the entire dataset, while the remaining part is further
divided: 60% train set and 40% validation set.

2
.
1. Algorithm training . – The goal of the training phase is to obtain a good dis-

criminating power by keeping the algorithm as simple as possible. Indeed, a too complex
algorithm could lead to overfitting, i.e., very good performance during the training phase
but poor discriminating power on new data.

The best set of features is chosen starting from a set of 33 features considering both
the correlation and the importance of each feature with respect of the others. First of
all, the most correlated features are removed and then the behaviour of the AUC score,
a measure of the classifier discriminating power, as a function of the number of features
is considered. Eventually, the set of features that turns out to be the most reasonable
compromise between good performance and a not too complex algorithm is the one
with the best 16 features. Reducing the number of features is crucial to maintain the
algorithm simple and also to reduce the risk of discrepancies between data and Monte
Carlo. The hyperparameters tuned during the training phase were the number of decision
trees and the maximum depth of each decision tree. Different possible values of each
hyperparameter are tested to find the best working point and eventually a reasonable
compromise between performance and simplicity is:

• number of trees: 447

• max depth: 11
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Fig. 1. – Left: signal and background distribution of the variable that represents the identification
algorithm output. Right: behaviour of the efficiency as a function of the mistag rate; the yellow
star identifies the working point used for the RK analysis.

2
.
2. Algorithm performance. – The algorithm performance is tested on the test set.

The variable that represents the output of the algorithm shows high discriminating power
(fig. 1). The curve that represents the behaviour of the efficiency as a function of the
mistag rate is shown in fig. 1, the x axis is in logarithmic scale to make the value of the
mistag rate visible, that corresponds to an efficiency of the 60%. The final AUC score,
obtained by computing the area under the same curve but in linear scale, is equal to
0.946, while it would be equal to 1 for a perfect algorithm.

3. – Performance on data

The algorithm performance is tested on data by analyzing the process B± →
J/ψ(e+e−)K±. A cut based selection is studied on a Monte Carlo simulation of the
same process to select this decay from the B-parking dataset. The variables that enter in
the cut based selection are: the invariant mass and the transverse momentum computed
combining the three candidate particles (K±e+e−), the secondary vertex probability and
the cosine of the angle between the B± meson line of flight and the vectorial sum of the
momentum of the three tracks.

The Monte Carlo truth is used to separate the signal and the background component
of the variable that represents the identification algorithm output in the simulated data.

Fig. 2. – Fit to the invariant mass distribution of the selected e+e− candidates. On the left, no
cut on the variable that represents the identification algorithm output is applied, while on the
right the same variable is required to be greater than 7.
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Fig. 3. – Data-Monte Carlo comparison for the signal component of the variable that represents
the identification algorithm output.

The selection of the signal component in data is performed using the SPlot technique [4].
This technique leverages the knowledge of the functional form of signal and background
of a given variable to separate the two contributions also in any other variable of the same
dataset. The variable used is the electron-positron invariant mass; the signal component
is parameterized through a double Crystal Ball, while the background is parameterized
through an exponential function (fig. 2). To test the discriminating power of the algo-
rithm, a cut on the identification algorithm output is applied (fig. 2). The significance

S√
S+B

, where S and B are the number of signal and background events estimated from

the data, improves from 137± 5 to 179± 9 when the cut is applied.
The data-Monte Carlo comparison (fig. 3) shows a good agreement even if there is a

trend for the high value of the identification variable that needs to be further investigated.

4. – Conclusion

A new algorithm for low pt electron reconstruction has been developed to test lepton
flavour universality in B meson decays at the CMS experiment. Modern Machine Learn-
ing techniques have been adopted to significantly improve the identification of electrons
with pt < 15GeV. The final results show a good data-Monte Carlo agreement and high
discriminating power between electrons and fakes.
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