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Summary. — Analytical arguments and lattice simulations indicate that, beside
the known resonance of mass mh = 125GeV, defined by the quadratic shape of the
effective potential at its minimum, the Higgs field could exhibit a second heavier
excitation with mass (MH)theor = 690 ± 10 (stat) ± 20 (sys)GeV. This larger MH

would measure the zero-point energy and, differently from mh, would remain finite
in units of the weak scale 〈Φ〉 ∼ 246.2GeV for an ultraviolet cutoff Λs → ∞. In
spite of its large mass, however, the heavier state would couple to longitudinal W’s
with the same typical strength of the low-mass state at 125GeV. As such, its total
decay width ΓH would be much smaller than the conventional expectation and its
main production mechanism at LHC would be through gluon-gluon fusion (ggF).
For an experimental check I have thus considered the ATLAS sample of 4-lepton
ggF-like events in the region of invariant mass μ4l = 620–740GeV (l = e, μ) which
extends about ±60GeV around our central mass value. These data indicate the
presence of a new resonance with mass (MH)exp = 660–680GeV and reproduce,
to high accuracy, a characteristic correlation, between resonating peak cross section
σR(pp → H → 4l) and the ratio γH = ΓH/MH . This correlation is nearly insensitive
to the precise value of ΓH and mainly determined by the lower mass mh = 125GeV.
Therefore, one could also fit mh from the 4-lepton data in the high-mass range 620–
740GeV. The result (mh)

fit ∼ (125 ± 13)GeV reproduces the direct measurement
of the Higgs particle mass and supports the idea that mh and the new (MH)exp are
the masses of two different excitations of the same field.

1. – Introduction

Today, the Higgs field spectrum is described as a single narrow resonance of mass
mh = 125GeV defined by the quadratic shape of the effective potential at its minimum.
If Spontaneous Symmetry Breaking (SSB) is a second-order phase transition, this is the
PDG view [1] with scalar potential

(1) VPDG(ϕ) = −1

2
m2

PDGϕ
2 +

1

4
λPDGϕ

4.

For mPDG ∼ 88.8GeV and λPDG ∼ 0.13, this has a minimum at |ϕ| = 〈Φ〉 ∼ 246GeV
and a second derivative V ′′

PDG(〈Φ〉) ≡ m2
h = (125GeV)2.

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 MAURIZIO CONSOLI

However, recent lattice simulations of Φ4 in 4D [2-4] support instead the view of SSB
as a (weak) 1st-order phase transition. While in the presence of gauge bosons SSB is
often described as a 1st-order transition, recovering this result in pure Φ4 requires to
replace standard perturbation theory with some alternative scheme. The implications of
a 1st-order scenario in pure Φ4 have not been fully exploited because, with a finite but
very large cutoff, besides the 125GeV resonance, there could be another much larger mass
scale MH associated with the zero-point energy. Since vacuum stability would depend
on MH , and not on mh, SSB could originate within the pure scalar sector regardless of
the other parameters of the theory, e.g., the vector boson and top quark mass.

For more details, I address to refs. [5-7] where, as schemes for a (weak) first-order
transition in Φ4, one explored the original Coleman-Weinberg [8] one-loop calculation
and the Gaussian effective potential [9, 10]. Indeed, in both cases, SSB occurs when
the quanta of the symmetric phase have a tiny but still positive mass squared. These
two calculations, corresponding to different re-summations of graphs, support each other
and admit the same physical interpretation: an effective potential Veff(ϕ) given by some
classical background + zero-point energy of a particle with some ϕ−dependent mass
M(ϕ). As a result, in both approximations, by defining m2

h as V ′′
eff(ϕ) at the minimum

and MH as M(ϕ) at the minimum, in terms of the ultraviolet cutoff Λs, one finds

(2) L = ln(Λs/MH) ∼ 1

λ
, M2

H ∼ Lm2
h � m2

h.

With these two mass scales, which do not scale uniformly, the correct renormalization
pattern is obtained by requiring the standard non-interacting continuum limit for the
fluctuations around the minimum of the potential (“triviality”). Then, with the usual
relations m2

h = λ〈Φ〉2/3 and λ ∼ 16π2/(3L), one finds cutoff-independent MH and 〈Φ〉.
To further clarify the mh − MH difference, let us recall that the derivatives of the

effective potential produce (minus) the n-point functions at zero external momentum.
Hence m2

h, which is V ′′
eff(ϕ) at the minimum, is directly the 2-point function |Π(p = 0)|.

On the other hand, the zero-point energy is (one-half of) the trace of the logarithm of
the inverse propagator G−1(p) = (p2 −Π(p)). Thus M2

H effectively reflects some average
value |〈Π(p)〉| at larger p2 so that, if MH �= mh, there must be a non-trivial momentum
dependence of Π(p)(1).

This two-mass structure was checked with lattice simulations of the propagator [5].
By computing m2

h from the p → 0 limit of G(p) and M2
H from its behaviour at higher

p2, the lattice data indicate two different regimes and a propagator [7] of the form

(3) G(p) ∼ 1− I(p)

2

1

p2 +m2
h

+
1 + I(p)

2

1

p2 +M2
h

,

where the interpolating function I(p) depends on an intermediate momentum scale p0
and tends to +1 for large p2 � p20 and to −1 when p2 → 0. Notably, the lattice data were
consistent with the increasing logarithmic trend M2

H ∼ Lm2
h in the continuum limit(2).

(1) This explains the different cutoff dependence of mh and MH . Indeed, the “triviality” of Φ4

requires a continuum limit with just a massive free-field propagator. Thus, for Λs → ∞, there
are only two possibilities: either the usual perturbative limit mh/MH = 1 + O(λ) → 1 or their
non-uniform scaling, see [7].
(2) Equation (3) resembles van der Bij’s two-pole propagator [11] indicating that (one-loop)
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Since, differently from mh, the larger MH remains finite in units of 〈Φ〉 ∼ 246.2GeV
for Λs → ∞, one can derive their proportionality relation. To this end, let us express
M2

H in terms of m2
hL through some constant c2, say M2

H = m2
hL · (c2)−1 and replace

the leading-order estimate λ ∼ 16π2/(3L) in the relation λ = 3m2
h/〈Φ〉2. Then one finds

MH = K〈Φ〉 with K ∼ (4π/3) · (c2)−1/2. Since, from a fit to the lattice propagator [5],
we found (c2)

−1/2 = 0.67± 0.01 (stat)± 0.02 (sys) this gives the estimate

(4) MH = 690± 10 (stat)± 20 (sys) GeV.

In this theoretical framework, I will describe in sect. 2 the basic phenomenology of the
new resonance and then resume in sect. 3 the analysis of [14] of the ATLAS 4-lepton
data in the range 620–740GeV [15]. These data suggest a new resonance consistently
with eq. (4) and, even more significantly, reproduce a particular correlation with the
lower-resonance mass at 125GeV. Finally, sect. 4 will contain the conclusions.

2. – The new resonance and its basic phenomenology

For the “triviality” of Φ4 theories in 4D, the Λs−independent combination 3K2 =
3M2

H/〈Φ〉2 cannot determine observable processes. In this sense, 3K2 is basically different
from the coupling λ governed by the β-function

(5) ln
μ

Λs
=

∫ λ

λ0

dx

β(x)
.

For β(x) = 3x2/(16π2) +O(x3), whatever the contact coupling λ0 at the asymptotically
large Λs, at finite scales μ ∼ MH this gives λ ∼ 16π2/(3L) with L = ln(Λs/MH).

Notice [16, 7] that there is no contradiction with the original calculation [17] in the
unitary gauge. There, a large MH in the Higgs propagator was making very high-
energy WLWL scattering similar to χχ Goldstone boson scattering with contact coupling
λ0 = 3K2. However this is a tree approximation with the same coupling at all momentum
scale. To describe WLWL scattering at some scale μ one should first use the β−function
to re-sum higher-order effects in χχ scattering

(6) A(χχ → χχ)
∣∣∣
ggauge=0

∼ λ ∼ 1

ln(Λs/μ)

and then use the Equivalence Theorem [18-20] which gives

(7) A(WLWL → WLWL) = [1 +O(g2gauge)] A(χχ → χχ)
∣∣∣
ggauge=0

= O(λ).

Thus the large coupling λ0 = 3K2 is actually replaced by the much smaller coupling

(8) λ =
3m2

h

〈Φ〉2 = 3K2 m2
h

M2
H

∼ 1/L.

radiative corrections will feel an effective mass meff with mh ≤ meff ≤ MH , see [7]. Thus, one
should check how well the mass from radiative corrections agrees with the mh = 125GeV, mea-
sured directly at LHC. Here it is crucial the positive meff−αs(Mz) correlation [12], with αs(Mz)
giving the strong-interaction correction to the quark-parton model in σ(e + e− → hadrons)
at energy Q = Mz. Since the most complete analysis of e + e− → hadrons data [13], for
20GeV ≤ Q ≤ 209GeV, indicates an overall 4-sigma excess with αs(Mz) � 0.128, the present
view, that the Higgs mass parameter from radiative corrections agrees perfectly with the
mh = 125GeV measured at LHC, is not free of ambiguities.
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Analogously, the conventional large width into longitudinal W’s computed with λ0=3K2,
say Γconv(H→WLWL)∼M3

H/〈Φ〉2, should be rescaled by (λ/3K2)=m2
h/M

2
H . This gives

(9) Γ(H → WLWL) ∼
m2

h

M2
H

Γconv(MH → WLWL) ∼ MH
m2

h

〈Φ〉2 ,

where MH indicates the available phase space in the decay and m2
h/〈Φ〉2 the inter-

action strength. For the reference value MH = 700GeV, where Γconv(H → ZZ) ∼
56.7GeV [22], this gives

(10) Γ(H → ZZ) ∼ m2
h

(700 GeV)2
56.7 GeV

so that for mh = 125GeV one finds Γ(H → ZZ) ∼ 1.8GeV.
Besides, in [21, 7] one was also assuming Γ(H → fermions + gluons + photons . . .) ∼

28GeV and the ratio Γ(H → W+W−)/Γ(H → ZZ) ∼ 2.03, from [22], deducing a
total width Γ(H → all) ∼ 33.5GeV and a fraction B(H → ZZ) ∼ (1.8 / 33.5) ∼ 0.054.
However, these estimates were not inluding the new contributions to the total width from
the decays of the heavier state into the lower-mass state at 125GeV. These include the
two-body decay H → hh, the three-body decays H → hhh, H → hZZ, H → hW+W−

and all higher-multiplicity final states allowed by phase space. Therefore, the above value
Γ(H → all) ∼ 33.5GeV should only be considered as a lower bound and the fraction
B(H → ZZ) ∼ (1.8 / 33.5) ∼ 0.054 as an upper bound.

Since it is not easy to evaluate these additional contributions, I will now discuss a test
that does not require the knowledge of the total width. To this end, I will consider the
4-lepton channel and a certain excess of events in the ATLAS data around 680GeV [15]
by only relying on two assumptions:

i) a resonant 4-lepton production through the chain H → ZZ → 4l;

ii) the value eq. (10) and the linear scaling for small variations around MH = 700GeV

(11) Γ(H → ZZ) ∼ MH

700 GeV
· m2

h

(700 GeV)2
56.7 GeV.

Therefore, by defining γH = Γ(H → all)/MH , we find a fraction

(12) B(H → ZZ) =
Γ(H → ZZ)

Γ(H → all)
∼ 1

γH
· 56.7
700

· m2
h

(700 GeV)2
,

that will be replaced in the cross section approximated by on-shell branching ratios

(13) σR(pp → H → 4l) ∼ σ(pp → H) ·B(H → ZZ) · 4B2(Z → l+l−).

This should be a good approximation for a relatively narrow resonance, whose virtuality
should be small, so that one gets the anticipated correlation

(14) γH · σR(pp → H → 4l) ∼ σ(pp → H) · 56.7
700

· m2
h

(700 GeV)2
· 4B2(Z → l+l−).
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Table I. – The ATLAS ggF-like 4-lepton events for the four different categories.

E [GeV] MVA-high-4μ MVA-high-2e2μ MVA-high-4e MVA-low ToT

635(15) 2 0 1 7 10

665(15) 0 2 2 17 21

695(15) 1 0 1 9 11

725(15) 0 1 0 3 4

Since 4B2(Z → l+l−) ∼ 0.0045, the last needed ingredient is the production cross section
σ(pp → H). As discussed in [21, 7], the relevant production in our picture is through
gluon-gluon Fusion (ggF). In fact, the Vector-Boson Fusion (VBF) plays no role in our
model(3). Thus, I will replace σ(pp → H) → σggF(pp → H) in eq. (14) and use the ggF
cross sections taken from the updated Handbook of Higgs cross sections [24], see table 1
of [14]. For 13TeV pp collisions, and taking into account a typical ±15% uncertainty due
to the choice of the parton distributions, of the QCD scale. . . , this gives the estimate
σggF(pp → H) ∼ 1180(180) fb which also accounts for the range MH = 660–700GeV.
Therefore, for mh = 125GeV, we arrive to the theoretical prediction

(15) [γH · σR(pp → H → 4l)]theor ∼ (0.0137± 0.0021) fb.

3. – Analysis of the ATLAS 4-lepton events

To check eq. (15), we have considered [14] the ATLAS sample [15] of 4-lepton data
for invariant mass μ4l = 620–740GeV (l = e, μ) which extends about ±60GeV around
our central mass value eq. (4). Now, eq. (15) accounts for H-production via the ggF
mechanism and ignores VBF production which plays no role in our picture. Therefore,
one should compare with that subset of data that, for their characteristics, admit
this interpretation. To this end, the ATLAS experiment has performed a Multivariate
analysis (MVA) of the ggF production mode which divides the events into four mutu-
ally exclusive categories: ggF-MVA-high-4μ, ggF-MVA-high-2e2μ, ggF-MVA-high-4e,
ggF-MVA-low. The four sets were extracted from the corresponding HEPData file [25]
and are reported in table I.

By transforming the total number of ggF 4-lepton events in table I into cross sections,
for the given luminosity 139 fb−1, and defining s = E2, we also assumed the interference
of a resonating amplitude AR(s) ∼ 1/(s −M2

R) with a smooth background AB(s). For
a positive interference below peak, setting M2

R = M2
H − iMHΓH , this gives a total cross

(3) The V V → H process (here V V = W+W−, ZZ) is the inverse of the H → V V decay so
that σVBF(pp → H) can be expressed [23] as a convolution with the parton densities of the
same Higgs resonance decay width. The traditional importance of this mechanism depends on
the conventional large width into longitudinal W ’s and Z’s computed with the 3K2 coupling.
In our case, where this width is rescaled by the small ratio (125/700)2 ∼ 0.032, one finds
σVBF(pp → H) � 10 fb which can be safely neglected.
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Table II. – For each γH we report the values of MH , peak cross section σR and product k =
γH · σR obtained from a fit with eq. (16) to the total ATLAS events in table I.

γH MH [GeV] σR [fb] k = γH · σR [fb]

0.05 678(6) 0.218(39) 0.0109(20)

0.06 676(7) 0.191(30) 0.0115(18)

0.07 673(10) 0.174(26) 0.0122(18)

0.08 669(20) 0.161(24) 0.0129(19)

0.09 668(16) 0.151(22) 0.0136(20)

0.10 668(15) 0.141(21) 0.0141(21)

0.11 669(15) 0.133(21) 0.0146(23)

0.12 670(16) 0.125(22) 0.0150(26)

0.13 672(17) 0.118(23) 0.0153(30)

0.14 673(19) 0.112(26) 0.0157(36)

0.15 674(20) 0.106(29) 0.0159(43)

section

(16) σT = σB − 2(s−M2
H) ΓHMH

(s−M2
H)2 + (ΓHMH)2

√
σBσR +

(ΓHMH)2

(s−M2
H)2 + (ΓHMH)2

σR,

where, in principle, both the average background σB , at the central energy 680GeV, and
the resonating peak cross-section σR can be treated as free parameters.

In a first series of fits to the ATLAS data, for each given γH = ΓH/MH , there
were 3 free parameters, namely MH , σR and σB . As a control, we then repeated the
analysis by assuming the background to be a decreasing function of energy depending on
a parameter fixing the slope of σB(E) at E = 680GeV. The second series of fits did not
show appreciable evidence for an energy-decreasing background so that we reported in
table II the results with a constant average background. The profile of the χ2 as function
of γH and the fit to the ATLAS cross sections for γH = 0.09 are reported respectively in
fig. 1 and in fig. 2.

0.05 0.1 0.15
H

0

0.5

1

1.5

2

2.5

3

2

Fig. 1. – At the various γH , the chi-square of the fit with eq. (16) to the ATLAS data.
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Fig. 2. – For γH = 0.08, we show the fit with eq. (16) to the ATLAS cross sections in fb.

I have also reported in fig. 3 the peak cross sections of table II and compared with the
shaded area enclosed by the two hyperbolae σR = (0.0137 ± 0.0021)/γH . This picture
illustrates how well the observed γH − σR correlation in table II is reproduced by our
theoretical model eq. (15). In particular, notice the agreement between eq. (15) and the
value k = γH · σR = 0.0136(20) for γH = 0.09 which gives the minimum χ2. Finally, a
fit to all entries in table II with χ2 < 1 gives

(17) [γH · σR(pp → H → 4l)]fit = k ∼ (0.0137± 0.0008) fb.

Therefore, with our estimate σ(pp → H) ∼ σggF(pp → H) ∼ 1180(180) fb, we find

(18) (mh)
fit ∼ (125± 13) GeV,

whose central value coincides with the measured Higgs particle mass.

0.05 0.1 0.15
H

0.05

0.1

0.15

0.2

0.25

0.3

 R

Fig. 3. – The σR’s of Table 2 are compared with our theoretical prediction eq. (15) represented
by the shaded area enclosed by the two hyperbolae σR = (0.0137± 0.0021)/γH .
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4. – Summary and conclusions

From the phenomenological analysis of sect. 3, we can draw the following conclusions:

i) Table II suggests a new resonance of mass 660–680GeV consistently with eq. (4).

ii) Our prediction eq. (15) coincides with the corresponding eq. (17) obtained from a
fit to the ATLAS 4-lepton data. Equivalently, the central value of the fitted lower-
mass state (mh)

fit ∼ (125± 13)GeV coincides with the direct, experimental value
mh = 125GeV.

iii) Consistently with our picture, in the ATLAS analysis there is no sizeable contri-
bution from the VBF production mode to the new resonance (on average, only 2
VBF-like events vs. 46 ggF-like events, see fig. 2e of ref. [15]).

iv) re-obtaining exactly the same central value mh = 125GeV means that, for MH ∼
680GeV, a ggF cross section of about 1180 fb and the ATLAS selection criteria of
ggF-like events are consistent to a high level of precision

v) the correlation successfully reproduced in fig. 3 effectively eliminates the spin-zero
vs. spin-2 ambiguity in the interpretation of the heavy state.

Therefore, our picture of a second resonance of the Higgs field finds support in the
present ATLAS 4-lepton data. Given the importance of the issue, an analogous compar-
ison with CMS would be important. Unfortunately, this can only be done with smaller
statistical samples because in the full 137 fb−1 CMS analysis [26], all data in the range
600–800GeV were summarized into a single bin of 200GeV. However, with a, hopefully,
forthcoming analysis of data in 20–30GeV bins, as made by ATLAS, the correlation
could be checked again. In this case, the whole issue of the second resonance could be
settled now, before the start of RUN3. Of course, for a complete analysis, one should
also look at the other final states. For this reason, I will close this paper by mentioning
the (local) 3-sigma excess, see fig. 3 of [27], observed in the ATLAS γγ distribution for
the same invariant-mass μγγ ∼ 680GeV obtained from our analysis of the 4-lepton data.
Even though the global statistical significance is reduced to less than 2-sigma, by the
looking-elsewhere effect, still this particular excess of events represents the highest peak
in fig. 3 of [27].
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