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Napoli, Italy
(2) GSSI - L’Aquila, Italy
(3) Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi Vanvitelli
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Summary. — We outline a unified introduction to the general problem of dynamics
intended for a high-school students audience. The attempt consists in circumventing
the lack of mathematical knowledge with the use of 1) geometric diagrams, 2) a
discretized version of the equations of motion and 3) a simplified form of computation
and analysis of their solutions. The aim is to allow students to approach theoretical
features as well as computational aspects of the evolution equations through the use
of spreadsheets, a work environment students are usually familiar with and an ideal
tool for an intuitive approach to recursive algorithms. The proposal was presented
to an audience composed of students of University courses of Physics teaching and
to high-school Science teachers.

1. – Introduction

In the last years, the Italian Ministry of Education has been recommending that
modern physics should be part of any high-school physics curriculum [1]. As well known,
however, there are many peculiar obstacles to overcome to comply with those recommen-
dations, namely the lack of mathematical knowledge that is necessary to treat ordinary
and partial differential equations in a rigorous way. Also, it has been often remarked that
high-school physics reduces to an arid enumeration of laws, a list of fragmentary pieces
of information related to each other only by the chronological order of their “discovery”.
To make an example, in the volume “Innovations in Science and Technology Education”,
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edited by UNESCO, Svein Sjøberg analyzes the status of science and technology edu-
cation and the way science and the scientists’ work are perceived by young people [2].
In a section devoted to the possible reasons for the “disenchantment with science and
technology”, the author criticizes many actual curricula and textbooks which, in his
opinion, “are overloaded with facts and information at the expense of concentration on
few big ideas and key principles” often leading to “rote learning without any deeper
understanding.” We think that a natural way to exhibit the deeper meaning of physical
theories and their extraordinary power to account for observable phenomena would be
to perform a qualitative and/or quantitative analysis of the solutions of the dynamical
equations describing the evolution of actual systems. However, If the skills for performing
such an analysis are lacking, students are deprived of the astonishment and motivation
resulting from the verification of the effectiveness of the theory. In many contributions
to the previously cited book, the focus is also on the role of technological applications as
a resource to outline the “scientific method” as being “not just about knowing but also
about doing and making things work”. Both new technologies and conventional software
(i.e., databases, spreadsheets, graphical programs, etc.) are presented as key elements
to develop teaching and learning together with modelling, visualization and simulation
of processes. Recent proposals in response to students’ difficulties are in fact heading in
this direction. Other approaches along the same lines demonstrate how computational
physics, beyond being an effective way to find approximate solutions to specific problems,
can help students understand basic concepts in physics [3-5].

The main aim of this paper is to propose a unified methodology that tries to by-
pass technical difficulties involved in the rigorous treatment of differential equations. We
have worked on developing an approach that can foster the connection between phe-
nomena that very often appear in a fragmented way. We propose an approach to the
study of dynamical systems starting from classical dynamics up to stochastic and quan-
tum dynamics which try to circumvent this problem. A forthcoming paper, currently in
preparation, will be devoted to statistical and quantum dynamics. In the following, we
introduce the general aspects of our proposal and illustrate them with some phenomena
of classical dynamics, e.g., planetary motions, linear and non-linear oscillations, and field
equations. In this work, the study of the dynamics of physical systems is presented from
a geometrical construction. More precisely, we consider a discretized space-time where
the evolution equations are translated into recurrent vector equations; then, given the
acting force and any set of initial conditions, solutions at any future time are computed
by iteration and graphically represented. In this way, the dynamical equations of both
ordinary and unconventional physical systems are presented as recurrence prescriptions.
The continuous space-time limit is then qualitatively obtained by looking at the solu-
tions on a scale where discretization becomes unnoticeable, avoiding in the first place all
mathematical details. This kind of reasoning is naturally implemented on a spreadsheet
and gradually towards more elaborate software in order to simplify the computational
aspect and adapt it to computer skills possessed by high-school students. Agreeing with
a rich bibliography [6-9] we propose the spreadsheet as the main didactic tool because it
is largely used in school contexts and it is also an ideal environment for an intuitive ap-
proach to the general problem of solving dynamical equations. Moreover, without having
previous knowledge of programming languages, students can easily implement solution
algorithms and focus their attention on the actual behaviour of solutions.

But the focus of our proposal is more on the reasoning involved than on the tool
actually employed. We wish to stress that our primary aim is to stimulate an intuitive
understanding of the meaning and conceptual role of evolution laws in the general study



AN INTUITIVE INTRODUCTION TO THE EVOLUTION OF PHYSICAL SYSTEMS 3

of physical systems, relying on and putting to profit the key idea of iterative process.
Our plan is not merely to replace a continuous mathematical language with a discrete
one: the necessity of a theory of limits to give a rigorous meaning to the evolution equa-
tions in a spatio-temporal continuum should be discussed and clarified. In particular, it
should be made explicit that this further step requires new mathematical tools. How-
ever, whenever approximate solutions are explicitly computable, the physical meaning
and the explanatory power of a theory may be equally perceived in a discrete space-time
setting(1).

In the following sections, we detail the discrete version of the evolution equations we
propose to consider. In particular, we will use the simplest form of discretization, without
going into any issue concerning the stability of numerical calculation. As a final remark,
we wish to share the view supported in [12] and in [13], where, in opposition to conceptual
fragmentation, the authors emphasize the importance of a phenomenological approach
that aims to connect experimental and theoretical perspectives, without excluding the
relevant epistemological problems inevitably arising in the “game of modeling”.

2. – Classical dynamics

Geometric introduction. – The basic idea of Newton’s dynamical theory of motion
consists in attributing a cause to the motions of bodies in terms of the forces acting
on them. His three “laws of motion” detail quantitatively the effects of these forces on
the motions of bodies. The first law states that under the action of the sole vis insita
or inertia (i.e., in the case of an approximately isolated body) the motion is rectilinear
with constant speed. The second law states that the effect of the interaction between
bodies, i.e., of forces, is a change in the velocity of the body (e.g., in the direction and
magnitude of its motion). In particular, Newton showed how a large class of natural
motions could be explained through the single hypothesis of the existence of a reciprocal
attraction acting along the line connecting physical bodies. In this way, he was able to
account in a unified way for a vast range of phenomena, including the Keplerian motions
of planets, satellites and comets, tidal phenomena, falling bodies and oscillatory motions
(namely, the motions of pendula).

In Newton’s system, space and time form a homogeneous and isotropical frame that
pre-exists matter and is completely unaffected by it. Physical bodies move inside this
absolute (i.e., independent from anything else) space-time frame: what Newton calls
space is the (continuous) set of places occupied by material bodies, while the term time
indicates, in essence, a (continuous) uniformly flowing parameter which can be used
to track the motion of all the bodies in the universe(2). In order to find the motion
of bodies under some given condition, one is faced with the mathematical problem of
constructing the successive positions and velocities of a material body resulting from a
continuous infinity of velocity variations (i.e., the continuous impulses of the external

(1) In this regard, we want to mention the book [10], where the authors apply a similar approach
to analyze qualitative and quantitative features of the evolution of classic dynamical systems,
with particular emphasis to the onset of chaotic behaviors. Another clear text in discrete
mathematical physics intended for an audience of mathematics students at College level is [11].
(2) In principle, this absolute time would be exhibited to observation by the motion of a body
isolated from any other, but this is only a limiting condition that is never attained in the physical
world. An accessible overview of Newton’s mathematics and philosophy is [14].
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forces), starting from some assumed values of initial position and velocity(3).
As well known, in the Principia Newton solved this problem using a purely geomet-

rical approach. His method consisted essentially in the construction of diagrams made
according to rules that embodied his laws of motion, i.e., the inertia principle and the
proportionality between force and acceleration. Following Feynman [15], we will call this
kind of dynamical diagrams Newtonian diagrams.

The procedure for the construction of a Newtonian diagram may be summarized as
follows:

1) The motion is analyzed into a finite succession of rectilinear and uniform motions,
covering equal intervals of time and separated by impulsive forces that cause in-
stantaneous changes in the magnitude and direction of the velocity of the body.

2) The net change of velocity Δv of a material body velocity during a “short” interval
of time Δt is proportional to the impulse of the force F acting on the body during
this interval (Δv ∝ FΔt). Δt is “short” in the sense that, by assumption, during
this time the force F does not change “significantly”.

3) From the polygonal trajectory thus obtained, in which the motion is linear and
uniform in each interval, the continuous path in space is obtained in the limit of
“vanishingly short” intervals of time(4).

As a paradigmatic example of this kind of process, we briefly sketch Newton’s proof of
the assertion that in presence of a central force a moving body sweeps with respect to the
center of attraction equal areas in equal times (Principia, Prop. 1). This result, which
is the cornerstone of Newton’s dynamics, evidently includes Kepler’s area law about the
motion of planets around the Sun, provided this latter is regarded as a center of force.

Refer to fig. 1. Consider a succession of points (A,B,C), representing the successive
positions of a planet moving around the Sun, this latter being placed at the fixed position
S; we assume that these positions are separated by equal intervals of time Δt. The body
starts in position A, and in the time Δt goes to B with a constant speed. If no force
acted, by the first law the body would proceed inertially on a straight line with the
same speed, ending up after another Δt in the position c along AB such that AB = Bc.
However, because of the pull from the Sun, after 2Δt from the initial time the body will
be on some point C placed on the line parallel to BS and passing through c. The line
cC represents the change in velocity occurred in the time 2Δt due to the pull from the
Sun, and by the second law of motion is proportional to the force acting in this time.
The areas of the triangles SAB and SBC are the areas described by the radius vector
of the planet in two successive equal intervals of time, and it is easily demonstrated (by
Elements, I.35) that they are equal by construction. Therefore, in two successive equal
intervals of time the radius vector covers equal areas.

(3) For historical reasons, problems of this kind are sometimes called inverse problems, as
contrasted to direct ones, where the motion is given and it is required to find the acting forces.
For example, the direct Kepler problem may be stated as follows: given a body moving in an
ellipse around a fixed body occupying one of its focii and with a constant areal velocity with
respect to it, to find the force acting between the two bodies. On the other hand, the inverse
Kepler problem is the following: given two bodies attracting each other with an inverse-square
law of force, to find the motion of a one body with respect to the other, assumed stationary in
space. In the present paper we deal exclusively with inverse problems.
(4) This is only one of the possible approximate methods for the construction of a dynamical
diagram. For a detailed analysis on the various methods used by Newton in the Principia
see [16].
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Fig. 1. – Proof that the triangles SAB,SBc and SBC have equal areas. SAB and SBC have
the same base because AB = Bc and a common altitude SH, so they have the same area;
also SBC has the same area as SBc, because they have the same base SB and are comprised
between the same parallel line; therefore, SAB = SBc = SBC.

If one iterates the same construction for the successive triplets of equal-time positions
(B,C,D), (C,D,E), etc., the same result will hold, provided the force (which in general
is allowed to be different for each triplet) is always directed to the same point S (fig. 2).
So, in such a polygonal approximation the planet moves in each interval at a constant
velocity along the lines AB,BC,CD,DE which represent the (mean) velocity of the body
in the corresponding intervals of the orbit; at positions B,C,D,E the body undergoes
sudden changes of velocity, and the lines BV,CW,DX, . . . , represent these changes,
which are the net effect of the gravitational pull of the Sun in each interval. In the
limit of smaller and smaller Δt, the approximate polygonal path approaches without
limit a curved trajectory, described by the radius vector in such a way that equal areas
correspond to equal times. QED.

Fig. 2. – Reproduction of Newton’s diagram for Proposition 1 in the Principia. The positions
A,B,C,D,E are separated by equal times. The lines AB,BC,CD,DE are the (mean) veloci-
ties in those intervals; the lines BV,CW,DX, . . . , are the changes of velocity occurring at the
positions B,C,D; the areas SAB,SBC, SCD,SDE, . . . , are all equal.
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If one makes some further assumption about the character of the force acting on the
moving body (e.g., that it decreases with the square of the length of the radius vector)
one gets a definite rule for the construction of the successive vectors BV,CW,DX, . . . ,
and, therefore, of the successive velocities and positions of the moving body starting from
some initial values (e.g., a Keplerian ellipse, with the Sun occupying one of the focii). In
this way, one can draw the successive positions and velocities of the moving body and
thus construct the solution of the dynamical problem at hand.

For example, under the assumption of an inverse-square law it easy to see that the
velocity vectors trace a circle around the center of force, which in general is eccentric
to the circle itself. This peculiar dynamical symmetry of the inverse-square law was
first recognized in 1846 by William Rowan Hamilton [17] and independently rediscovered
many times, most notably by Feynman [18]. Hamilton called this geometrical picture
of the inverse-square law law of the circular hodograph, the hodograph being defined in
general as the curve traced by the velocity vectors of a moving point, when they are all
drawn from a common origin. The general method of the hodograph, which allows for
very simple and elegant solutions to many relevant dynamical problems, may be very
useful in high-school teaching and we used it extensively in our activities(5).

Symbolical translation. – The geometrical construction of any Newtonian diagram
may be easily translated into symbols using the language of vectors. Refer, for example,
to fig. 3, where the case of a central force acting on a unit mass is illustrated. Allowing
also for more general conditions, if we make the identifications

SA = x(t)

SB = x(t+Δt)

AB = Bc = v(t)Δt

BC = v(t+Δt)

cC = v(t+Δt)− v(t) =
1

m
F[x(t)]Δt,

where the function F(x(t), t) is the force acting on the point-like body when its po-
sition is x(t), we see that the construction of the Newtonian diagram solving an (in-
verse) dynamical problem amounts to solving for “short” Δt the following pair of vector
equations:

(1)

⎧⎨
⎩
x(t+Δt)− x(t) = v(t)Δt

v(t+Δt)− v(t) =
1

m
F[x(t), t] Δt

the function F(x(t), t) being given(6).
Notice that, also in the most general case, the only (kinematical) prerequisites of this

analysis are the vector identities expressing the total displacement and the total velocity

(5) On the LES website http://www.les.unina.it/?page id=4784 the reader may find addi-
tional material in this regard.
(6) Notice that a possible dependence of the force on the velocity (for example a friction force)
is not going to complicate the computational procedure used to find solutions of 1.
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Fig. 3. – Construction of the Newtonian diagram under the assumption of central force directed
toward S. A,B,C are successive positions of the moving body separated by equal times Δt;
SA, SB, SC are the vectors of relative position; AB,BC = AV are successive vectors of velocity,
before and after B; BV = cC is the change of velocity occurring in B due to the attraction
from S. The triangles SAB,SBc, SBC have equal areas by construction.

variation of the point particle as a sum of position and velocity changes in each time
interval [ti−1, ti], no matter how coarse or fine the subdivision of the total time interval
is

x(tN )− x(t0) =
i=N∑
i=1

[x(ti)− x(ti−1)] =
i=N∑
i=1

x(ti)− x(ti−1)

ti − ti−1
(ti − ti−1)

=

i=N∑
i=1

vti−1,ti(ti − ti−1),(2)

the “average velocity” between times t and t′ > t being defined as vt,t′ ≡ x(t′)−x(t)
t′−t .

In the same way, the total velocity variation is expressed as

v(tN )− v(t0) =
i=N∑
i=1

[v(ti)− v(ti−1)] =
i=N∑
i=1

v(ti)− v(ti−1)

ti − ti−1
(ti − ti−1)

=

i=N∑
i=1

ati−1,ti(ti − ti−1),(3)

where the “average acceleration” between times t and t′ > t is defined as at,t′ =
v(t′)−v(t)

t′−t .
It is noteworthy that within such a discretized time scheme one can easily define

work, kinetic and potential energy, as well as the crucial conservativeness of harmonic
and gravitational forces. Then, the dynamical law (1) and the kinematical identities (2),
(3) allow proving the conservation of total energy apart from terms that become negligible
when the time step of the chosen discretization is “small”, i.e., when the approximation
defined by (1) is made finer and finer.

A trivial example of this procedure is the following “proof” of the work-energy theo-
rem. From the identity

�vi+1 · �vi =
1

2
|�vi+1|2 +

1

2
|�vi|2 −

1

2
(�vi+1 − �vi) · (�vi+1 − �vi),
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one gets

�Fi · �vi =
m

τ
(�vi+1 − �vi) · �vi =

m

2τ
|�vi+1|2 −

m

2τ
|�vi|2 −

m

2τ
|�vi+1 − �vi|2

=
1

τ
(Ecini+1

− Ecini
)− mτ

2
|�ai|2.(4)

For bounded values of the force (meaning in turn bounded values of the acceleration)
and for small time intervals τ , (4) proves that the equality between the kinetic energy

variation velocity and the power of the force (≡ �Fi · �vi) holds. Multiplying by τ and
summing over all i’s one finds that the total work differs from the variation of the kinetic
energy by a term which is proportional to τ2, and becomes negligible if the time step is
taken sufficiently small.

We want to emphasize the concreteness, easiness and effectiveness of the discrete
approach coupled with an affordable way to compute solutions to equations (1)(7). Im-
plementing the recurrence (1) on a spreadsheet it is possible to compute the point mass
motion as a function of time. More precisely, when position and velocity (and, in turn,
force) are known at the initial time, the recurrence equations return position and ve-
locity at any time t. Each computational step consists in fact in the copy and paste of
the previous line, where the recursion formulas are written via relative references (apart
from fixed parameters appearing as absolute references).

In the following, we show how the procedure outlined above applies to classical systems
which are usually considered too complicated to be presented in an elementary physics
course. Our aim is to show that a qualitative and quantitative understanding of relevant
features of the evolution of complex system is surely within the reach of high-school
students.

Gravitation: the three-body problem. – As is widely known, Newton used the law of
universal gravitation together with the second law of motion to analyze the two-body
problem. He characterized all possible orbits and, in particular, deduced from his as-
sumptions Kepler’s laws of planetary motion. As astonishing as this result was, it was
little thing if compared, for example, to the theoretical discovery of Neptune (first ob-
served by Le Verrier in 1846), when the existence of a new planet was inferred by its
perturbative effect on the motion of Uranus. This was probably the most astonishing
confirmation of Newton’s theory of gravitation. More generally, we believe it is in the
treatment of non-Keplerian motions that the power of classical dynamics is most ef-
fectively perceived, since it allows making useful and precise predictions also when no
closed and general solution to the equations of motion may be found. Also, it was the
success of Newtonian dynamics in many-body problems that established celestial me-
chanics as the basis of the general mechanical world-view that prevailed during the Age
of Enlightenment and reached its peak with Laplace’s determinism.

Indeed, most post-Newtonian theoretical developments came from the effort to solve
problems involving more than two bodies. Already in the Principia, Newton made a
first attempt to deal with the three-body problem in order to calculate the effects of the

(7) However, it is clear that if no absolute minimal time interval is given (as it is the case
when a continuous model of space-time is assumed) the value of Δt remains unspecified and a
rigorous theory is missing. As we already remarked, this point is important and should not be
overlooked.
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Sun on the Moon’s motion around the Earth, a problem related, among other things,
to the prediction of tides. Not long after, Euler attacked the problem using a simplified
model, later denoted by Poincaré as the “circular restricted three-body problem”. In this
model, three point-like bodies interact via gravitational forces. One of them has a mass
which is negligible with respect to the masses of the other two, and these two “heavy”
bodies follow circular orbits around their common center of mass. The circular restricted
three-body problem marked the birth of perturbation theory in celestial mechanics, which
allowed to understand (and compute) the secular variations of planetary motions, and
started the investigations about the stability of the solar system.

Along the lines above it is possible to very easily investigate the evolution of a sim-
plified circular restricted three-body system. For the sake of simplicity, we assume:

• That the heaviest body (the Sun) has a mass MS so large to be subjected to
negligible acceleration. Its fixed position will be then taken as the origin of the
Cartesian coordinate system inside which the motion of the two planets is described.

• A planet of large mass Me is assumed to follow a circular orbit around the Sun.
Its position at time t is denoted by xe(t) = (xe(t), ye(t)).

• A second planet, of massm negligible with respect to the first, has an initial velocity
in the plane containing the Sun and the two planets at the initial time, in such a
way that its motion will always develop on this plane. The initial distance of the
light planet will be taken smaller than the radius of the orbit of the heavy one, and
for this reason the two planets will be referred respectively as the inner and outer
planet. The coordinates of the inner planet will be denoted by x(t) = (x(t), y(t)).

Under these assumptions, it is possible to use (1) to examine the motion of the light
planet subject to the gravitational action of the Sun and of the outer planet, for various
initial conditions and mass ratios.

In the following example, the components of the outer planet positions are taken to be

xe(t) = Re cos ωet; ye(t) = Re sin ωet.

In this case, eqs. (1) read

x(t+Δt)− x(t) =v(t)Δt,

v(t+Δt)− v(t) =
1

m
[FMSm(x(t)) + FMem(x(t), t)] Δt,(5)

where the forces on the inner planet due, respectively, to the Sun and to the outer planet
are

FMSm(x(t)) = −GMSm

||x(t)||3x(t),

FMem(x(t), t) = − GMSm

||xe(t)− x(t)||3 [xe(t)− x(t)].(6)
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Fig. 4. – An example of a worksheet showing computation and plots of the planet orbits in a
simplified circular restricted three-body planetary system.

The x components of these forces are

FMSm(x(t)) =
GMSm

[(x2(t) + y2(t))]
3
2

x(t),

FMem(x(t), t) =
GMem

[(xe(t)− x(t))2 + (ye(t)− y(t))2]
3
2

[xe(t)− x(t)] .(7)

The y components can be easily obtained by replacing x with y.
By implementing these equations on a spreadsheet (fig. 4), it is possible to examine

the motion of the inner planet for various values of the dynamical parameters (namely,
the ratios Me/MS and m/MS) and for different initial conditions. In particular, students
should be able to analyze the regime of “small perturbations” when both planetary orbits
are Keplerian, characterize the range of mass ratios when the orbits of the inner planet
are slowly perturbed and the onset of a chaotic behavior, investigating in this last regime
the strong dependence on the initial conditions. It is important to remark that a space
discretization is inevitably implied by the choice of the maximum number of decimal
places allowed in the spreadsheet.

As soon as students are aware of the possibility to compute approximate solutions to
the evolution equations via intuitive recurrence procedures, they may be confronted with
newer and more efficient ways to estimate the approximations made and to investigate
better and more stable procedures (e.g., two-point approximations). In particular, at
some point one can introduce object-oriented software to examine complex behaviors of
many-body gravitational systems. On the basis of previous experience, students should
be led to understand that the animations produced by the software are not the outputs
of a magic and inscrutable black-box (as many applets one may find on the web tend to
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Fig. 5. – The mass of each planet is very small with respect to the mass of the Sun. On the left,
their masses are equal; on the right, the mass of the outer planet is ten times that of the inner
planet. The orbits of the planets are almost Keplerian.

Fig. 6. – The mass of the outer planet is comparable to the mass of the Sun. For small differences
in initial conditions there are very different long-term outcomes for the inner planet. On the
upper-left, it is captured in a gravitational slingshot and is pushed out of the system; on the
upper-right, it enters an orbit much closer to the Sun. In the last figure, it finally collides with
the Sun.

be perceived), but the result of computational procedures not so far in their conceptions
from those they themselves had implemented.

Solutions of the evolution laws relative to different gravitational systems and their ani-
mations, obtained with both a spreadsheet and object-oriented software, may be found at
http://www.les.unina.it/?page id=4784. A freely modifiable spreadsheet modeling
the three-body problem may be found at https://rb.gy/9jo4. Here below, we inserted
a selection of figures exhibiting characteristic features of the three-body dynamics; see
figs. 5 and 6.

Oscillations: pendulum motion and Van der Pol model . – Besides planetary motion,
another gravitation-induced dynamics is the motion of the pendulum, an example of
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oscillation problem that is, by itself, extremely relevant for the history of measurement,
conceptualization and mathematical modeling of time. As an aside, it is worth mentioning
that textbooks often report confusing tautologies about the “operational” definition of
time intervals and of its measurement units. First, it is stressed the necessity to find
(rather than define) a “periodic” phenomenon; then, the “small” oscillations of pendulum
are experimentally found isochronous using a chronometer, whose working principle is
based on the existence of another isochronous phenomenon that no one knows how could
be assessed. In this way, the very important observation of the universal proportionality
between periods of completely distinct and independent systems oscillating around a
stable equilibrium position is overlooked in favor of a tautological procedure that leaves
the theoretical problem of time measurement untouched.

Pendulum motion can be thoroughly examined via the discretization procedure de-
scribed in the previous sections. In particular, the process can be implemented in a
spreadsheet and allows analyzing the oscillatory motion of a pendulum for whatever
initial conditions, also in the presence of viscous friction and forcing terms (e.g., the
one meant to model the escapement of the pendulum clock). Indeed, the recurrence rela-
tions (1) are usable also in the case of oscillations driven by forces depending non-linearly
on the displacement from the equilibrium position.

The recurrence equations for a pendulum in the time interval [0, T ], in the presence
of viscous friction and a forcing term, are

αi = − β

m
ωi −

g

l
sin θi,

ωi = ωi−1 + αi−1τ,

θi = θi−1 + ωi−1τ,

where αi (respectively, ωi, θi) is the angular acceleration (respectively, angular velocity,
angular position) at time iτ = T/N , β is the damping coefficient. One may also add a
forcing term to reproduce the effect of the escapement mechanism, for example of the
kind

Fesc = μe−10θ2i (1 + sgnωi),

where μ is a strength coefficient. This is a brief impulse affecting the pendulum motion
which is non-negligible only when the pendulum is very close to the vertical position; the
term (1+sgnωi) makes the escapement force active only when the pendulum crosses the
vertical position from left to right.

Students can examine several features of the motion. In particular, it is possible to
analyze the dependence of the period T on the initial conditions and on the dynamic
parameters and find out that:

• the period shows negligible changes for small oscillation amplitudes (θ < 5◦);

• isochronism is lost for large oscillation amplitudes;

• the period depends on a negligible way on damping: even if the oscillation ampli-
tude decreases, the small oscillation period remains essentially constant;

• the escapement restores the energy lost by viscous friction without changing the
oscillation period.
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Simulations and graphical presentations of results can be found at
http://www.les.unina.it/?page id=4812, where also modifiable spreadsheets
are available.

Another interesting example of a non-linear oscillating system which can be treated
with the same approach is the Van der Pol oscillator, sometimes called the model of
models. It was introduced in 1927 by electrical engineer Balthazar Van der Pol to describe
oscillations in a triode, and is one of the first examples of self-sustained oscillations, with
applications in very different fields of biology and technology [19].

One can regard this model as representing a spring-mass system whose energy is
pumped in or drained out depending on the mass position. The discretized equations
have the same structure as the pendulum equation for small oscillations (sin(x) ∼ x)
and without the escapement term; the coefficient that multiplies the velocity, however,
can take positive or negative values depending on the position of the mass. Therefore,
the model predicts transitions between regimes in which energy grows and decays. More
precisely,

ai = −β(1− x2
i )vi − xi,

vi = vi−1 + ai−1τ,

xi = xi−1 + vi−1τ,

where x, v, and a are, respectively, (linear) position, velocity, and acceleration of
the oscillating mass, β > 0 and β(1 − x2) is positive or negative depending on
whether the mass is close or distant from the origin. When β = 0, the equation de-
scribes a simple harmonic oscillator characterized by the period T = 2π (ω = 1).
Solutions to the Van der Pol equation obtained with a spreadsheet may be found
at http://www.les.unina.it/?page id=4812, where also modifiable spreadsheets are
available.

Fields: the elastic string . – With the same procedure outlined above, it is also pos-
sible to investigate the dynamics of classical fields, the only addition being the explicit
discretization of the spatial coordinates. Thus, field amplitudes become functions on a
discrete space-time lattice, and the evolution equations are given as recursive transition
matrices connecting space lattices at different times.

The simplest example of this kind of systems is an elastic string vibrating longitu-
dinally, which is also a good introduction to the dynamics of deformable bodies. A
discretized model of this system is a chain of N point masses which interact with their
neighbors through massless springs of elastic constant k and rest length equal to the
spatial lattice spacing Δx. The oscillator chain that leads to the propagation of a wave
is the final step in an educational path on coupled oscillators with which we have exper-
imented. The path starts from the experiences and modeling of two oscillators coupled
with the “discovery” that the generic motion (however bound by the conservation of me-
chanical energy) is a linear combination of normal modes with a suitable choice of initial
conditions. The oscillators are pendula or carts coupled with springs and the motion
is detected with a motion detector in real time. In the transition to many oscillators,
one also works with dynamic systems for the realization of simulations and animations.
Denoting with s(jΔx, nΔt) the displacement with respect to the equilibrium position of
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the jth mass at time nΔt, the force acting on that mass m is

FjΔx,nΔt = k[s((j + 1)Δx, nΔt)− s(jΔx, nΔt)]− k[s(jΔx, nΔt)− s((j − 1)Δx, nΔt)]

= k[s((j + 1)Δx, nΔt)− 2s(jΔx, nΔt) + s((j − 1)Δx, nΔt)].(8)

The equations of motion become

(9)

⎧⎨
⎩
s(jΔx, (n+ 1)Δt)− s(jΔx, nΔt) = v(nΔt)Δt,

v((n+ 1)Δt)− v(nΔt) =
1

m
FjΔx,nΔt Δt,

with j ∈ −N/2, . . . , N/2 and n ∈ Z. Given the displacements s(jΔx) and the velocities
v(nΔx) at time t = 0, the solution of the recurrence equations return displacements and
velocities of any point mass at any time nΔt.

Students are required to examine the way evolution depends on the ini-
tial conditions and on the dynamical parameters, and to investigate traveling
and standing solutions of the wave equations. Examples may be found at
http://www.les.unina.it/?page id=4784.

3. – Comments and conclusions

The aim of this article is to propose a unifying instructional strategy for the study
of dynamic systems for high-school students. The treatment of the theoretical and com-
putational aspects of our proposal is oriented to unify the teaching methodology. The
technical difficulties involved in the rigorous treatment of differential equations may be
overcome by the use of recursive relations that are easily implemented on a spreadsheet.
In our opinion, the advantages of such a presentation are:

• Dynamical laws are not simply given, but analyzed on the basis of their effectiveness
in modelling the step-by-step evolution of physical systems. This fact is first seen
by a (historically motivated) geometrical approach, and then translated into the
language of vectors.

• Students are enabled to autonomously study the dynamical features of complex sys-
tems whose analysis is generally considered too advanced for a high-school or even
undergraduate audience (e.g., many-body gravitational systems, large amplitude
pendulum oscillations, etc.). The numerical computation of real-time experiments
makes it possible to address topics that are usually studied in university courses.
They are provided with some preliminary skills for the study of how solutions de-
pend on the initial conditions and other dynamical parameters, a key element for
the study of non-linear and chaotic systems.

• The method is extendible to stochastic and even quantum dynamical laws. As
an example, the dynamics of a quantum particle can be described by means of a
discretized Schrödinger equation on a lattice, presented as a wave equation for a
two-dimensional vector field, avoiding the use of complex variables that are not yet
mastered by high-school students.

• In Italian secondary schools, the mathematics and physics programs are not aligned.
In particular, infinitesimal analysis is addressed in the last year and in physics
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textbooks, the concepts of limit, derivative and integral are often hastily introduced.
The approach we propose, based on discretization, develops starting from middle
school and refers to the experience of Emma Castelnuovo(8), and this allows us to
treat the laws of evolution of physical systems in a coherent way already in the first
years of secondary school.

• The proposal highlights how in the manual and automatic data taking (with in-
line sensors) and in the animations and simulations created with “professional”
systems, the models are all discrete and in particular the use of the spreadsheet
can help in acquiring articulated skills on numerical aspects of modelling. A sig-
nificant element of the proposal is the possibility of dealing with non-linear and
relatively complex phenomena with the same approach, giving the possibility of
grasping the meaning of the schematizations presented in the standard examples
of textbooks. In fact, when working with analytical solutions, physics books are
forced to deal with standard cases which are not always suitable for modelling the
phenomena encountered in the laboratory. Moreover, they do not allow working
with fundamental concepts and phenomena for the construction of theories (e.g.,
non-linear oscillators, three-body problem, etc.).

• The introduction to dynamical problems by the use of geometric diagrams coupled
with spreadsheets may be an effective prevention of the “black-box mindset” when
one moves to more sophisticated object-oriented simulation software. Here stu-
dents have full control over specific geometric and dynamical properties, evolution
rules, interactions among objects and generic initial conditions. Programs then
compute and display the successive evolution even for systems of great complex-
ity. These are important resources that allow students to explore on their own the
predictions of theoretical models, but too often the sophisticated computational
protocols behind the software remain concealed and are never seen by students not
experienced in programming languages. Our proposal also aims to bridge this gap,
using simplified forms of recursive calculation in order to make as clear as possible
how computational methods work.

The proposal outlined in the paper was presented in the university course “Didactics
of Physics” addressed to second-year students in physics and mathematics, in various
teacher training courses. In 2021-2022 school year, it was tested in middle-school and
high-school classes with great interest from the students and teachers of the classes
involved(9). The activities carried out with high-school students were analyzed with the
teachers of mathematics and physics in a training course organized by our group. In
the discussions, for the part concerning gravitational systems, the teachers underlined
the absence of teaching materials and textbooks which deal in a unitary way with the
discrete modelling of laws of evolution for high-school students.

(8) See https://en.wikipedia.org/wiki/Emma $Castelnuovo$ for an introduction to the
life and work of Emma Castelnuovo. See also https://www.mathunion.org/icmi/awards/

emma-castelnuovo-award.
(9) See http://www.les.unina.it/?p=3563 for additional material.
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