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Summary. — According to perturbative calculations, the effective potential of the
Standard Model should have a new minimum, well beyond the Planck scale, which is
much deeper than the electroweak vacuum. Since it is not obvious that gravitational
effects can become so strong to stabilize the potential, most authors have accepted
the metastability scenario in a cosmological perspective. This perspective is needed
to explain why the theory remains trapped into our electroweak vacuum but requires
to control the properties of matter in the extreme conditions of the early Universe.
As an alternative, we review the completely different idea of an effective potential
which, as at the beginning of the Standard Model, is restricted to the pure Φ4

sector but is consistent with the now existing analytical and numerical studies. In
this approach, where the electroweak vacuum is the lowest energy state, beside the
resonance of mass mh = 125 GeV defined by the quadratic shape of the potential
at its minimum, the Higgs field should exhibit a second resonance with a mass
(MH)theor = 690 ± 10 (stat) ± 20 (sys) GeV associated with the zero-point energy
which determines the potential depth. In spite of its large mass, this would couple
to longitudinal W’s with the same typical strength as the low-mass state at 125 GeV
and represent a relatively narrow resonance of width ΓH = 30 ÷ 36 GeV, mainly
produced at LHC by gluon-gluon fusion. Thus it is interesting that, in the LHC
data, there are various indications for a new resonance in the expected mass range
with a statistical significance which is far from being negligible and could become
an important new discovery by just adding two missing samples of RUN2 data.

1. – Introduction

The discovery at CERN [1, 2] of the narrow scalar resonance with mass mh = 125
GeV, and the consistency of its phenomenology with the theoretical expectations for
the Higgs boson, have confirmed Spontaneous Symmetry Breaking (SSB) through the
Higgs field as a fundamental ingredient of particle physics. Still, there may be space for
improving on the present description of symmetry breaking. This is based on a classical
double-well potential with perturbative quantum corrections, say V (p)(φ) which exhibits
a local minimum at |φ| = v ∼ 246 GeV and has quadratic shape fixed by m2

h = (125
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GeV)2. The point is that at large |φ| this is well approximated as V (p)(φ) ∼ λ(p)(φ)φ4 in
terms of the perturbative scalar coupling λ(p)(φ) which includes the effects of the gauge
and fermion fields and becomes negative beyond an instability scale φinst ∼ 1010 GeV.
As a net result, beside the local electroweak vacuum where V (p)(v) ∼ −108 (GeV)4, the
true, absolute minimum of this perturbative potential is at vtrue ∼ 1026÷ 1031 GeV [3,4]
(depending on the approximations and the exact values of the input parameters) with a
much deeper potential value V (p)(vtrue) ∼ −(10100 ÷ 10120) (GeV)4.

While it is reassuring that the most accurate calculation [5] gives a tunneling time
which is larger than the age of the Universe, still the idea of a metastable vacuum raises
several questions. For instance, the new minimum is much larger than the Planck mass
MP , and the Planck scale is usually regarded as the scale where gravity becomes strong.
Thus, at large φ ∼ MP should the problem be formulated in a curved space-time? In
this case, does the second minimum disappear? Here, due to various uncertainties, there
is no general consensus [6, 7] that gravitational physics at the Planck scale can become
so strong to stabilize the electroweak vacuum. On the contrary, the vanishing value of
the observed cosmological constant, on a particle physics scale, could imply that gravity
remains weak [4] at all energies without introducing any threshold effect near MP .

For this reason, one has been considering the metastability scenario in a cosmologi-
cal perspective because in an infinitely old Universe even an arbitrarily small tunneling
probability would be incompatible with our existence [8]. But, given the extreme condi-
tions of the early Universe, the survival of the tiny electroweak minimum is somewhat
surprising. As an example, before the discovery of the 125 GeV resonance, the authors
of ref. [9] were concluding that, for 114 GeV ≤ mh ≤ 130 GeV and from the analysis of
cosmological perturbations, either we live in a very special, and exponentially unlikely
corner or new physics must exist below φinst ∼ 1010 GeV.

As an alternative, one can consider the completely different idea of a non-perturbative
effective potential. Indeed, if SSB represents a non perturbative phenomenon, one could
try to describe it non perturbatively. Since this cannot be done by retaining the full
gauge and fermion structure of the theory, as at the beginning of the Standard Model,
one could first concentrate on the pure Φ4 sector but, in view of the substantial theoretical
progress of last fifty years, try to describe SSB consistently with the existing theoretical
and numerical studies. Then, as pointed out in refs. [10-12], one gets the idea of SSB as a
weak 1st-order phase transition and the intuitive picture of the broken-symmetry phase
as a condensate of real, physical quanta whose collective self-interaction represents the
primary sector inducing SSB. The quartic coupling λ(φ) associated with this collective
self-interaction is positive definite and exhibits a Landau pole. As such, this λ(φ) is quite
distinct from λ(p)(φ) in the sense that they could assume the same value at the Fermi
scale

(1) λ(v) = λ(p)(v) = 3m2
h/v

2

but behave quite differently at very large φ. The basic prediction of this new scenario
is the existence of a second resonance of the Higgs field with mass MH ∼ 700 GeV
associated with the scale of the Zero-Point Energy (ZPE). In a 1st-order description of
SSB this scale is much larger than the parameter mh defined by the quadratic shape of
the potential at the minimum. Moreover, with such a large mass MH ∼ 700 GeV, the
ZPE of all known gauge and fermion fields would represent a small radiative correction.
Thus, by restricting to a region around the Fermi scale, say a few TeV, the different
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evolution of λ(p)(φ) and of λ(φ) at asymptotically large φ should remain unobservable
and the check is demanded to the experimental observation of the second resonance.

After resuming in sect. 2 this different picture of SSB, we will review in sect. 3
the basic phenomenology of the second resonance. We will then summarize in sect. 4
some recent analyses [13-16] of LHC data which, indeed, support the existence of a new
resonance in the expected mass range with a non-negligible statistical evidence that could
become an important new discovery by just adding two crucial, missing samples of RUN2
data. Section 5 will finally contain a summary together with some remarks about the
present agreement between the Higgs mass parameter extracted indirectly from radiative
corrections and the value mh = 125 GeV directly measured at LHC.

2. – SSB in a Φ4 theory

2
.
1. Preliminaries . – Let us start from scratch with the type of scalar potential re-

ported in the review of the Particle Data Group (PDG) [17]

(2) VPDG(φ) = −1

2
m2

PDGφ
2 +

1

4!
λPDGφ

4

By fixing mPDG ∼ 88.8 GeV and λPDG ∼ 0.78, this has a minimum at |φ| = v ∼ 246
GeV and a second derivative V ′′

PDG(v) ≡ m2
h = (125 GeV)2 (one is adopting here the

identification m2
h = V ′′

PDG(v) = |G−1(p = 0)| in terms of the inverse, zero-momentum
propagator).

With eq. (2), one is assuming a double-well potential with suitably chosen mass and
coupling. The instability of the symmetric vacuum at φ = 0 is then traced back to the
condition V ′′

PDG(φ = 0) = −m2
PDG < 0 which characterizes SSB as a 2nd-order phase

transition. This traditional idea of a “tachyonic” mass term at φ = 0, however, is not the
only possible explanation. As in the original Coleman and Weinberg analysis [18], SSB
could originate from ZPE in the classically scale invariant limit V ′′

eff(φ = 0) → 0+. In this
case, if the quanta of the symmetric phase have a tiny physical massm2

Φ ≡ V ′′
eff(φ = 0) > 0

which is below some critical value m2
c , the symmetric phase could be “locally” stable but

become “globally” unstable. By lowering the mass below m2
c , the absolute minimum of

the effective potential would then discontinuously jump from φ = 0 to φ �= 0 and SSB
would represent a 1st-order phase transition.

We emphasize that this idea of SSB as a weak 1st-order phase transition in Φ4 theories
finds support in lattice simulations [19-21]. To this end, one can just look at fig. 7
of ref. [21] where the data for the average field at the critical temperature show the
characteristic 1st-order jump and not the smooth 2nd-order trend. This agreement with
lattice simulations is a good motivation to further explore the implications of a 1st-order
scenario (1).

(1) We observe that conflicting indications have more recently been reported in ref. [22]. These
authors, object to the traditional view that the Ising model and the Φ4 theory (at finite bare
coupling) belong to the same universality class. Thus a second-order phase transition, as in
standard RG-improved perturbation theory, would not be ruled out. Still, the Ising limit, with
a lattice coupling at the Landau pole, is known to saturate the triviality bound in Φ4. Namely,
at any fixed non-zero value of the renormalized coupling, it represents the best approximation
to the continuum limit [23], a remark which is certainly relevant for lattice simulations of a
quantum field theory. Furthermore, as discussed in Subsection 2.3, the weak first-order scenario
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Fig. 1. – An intuitive picture which illustrates the crucial role of the ZPE in a 1st-order scenario
of SSB. Differently from the standard 2nd-order picture, these have to compensate for a tree-level
potential with no non-trivial minimum.

From a physical point of view, the motivation for a tachyonic mass term at φ = 0
reflects the prejudice that Φ4 is a pure repulsive interaction. In this case, in fact, any
state made of physical massive particles would necessarily have an energy density which
is higher than the trivial empty vacuum at φ = 0. However, as discussed in [24], the Φ4

interaction is not always repulsive. The inter-particle potential between the basic quanta

of the symmetric phase, beside the +λδ3(r) tree-level repulsion, contains a −λ2 e−2mΦr

r3

attraction which originates from the ultraviolet-finite part of the 1-loop diagrams and
whose range becomes longer and longer in the mΦ → 0 limit (2). Due to the qualitative
difference of the two effects, to consistently include higher order effects, one should
re-arrange the perturbative expansion by renormalizing symmetrically both the contact
repulsion and the long-range attraction as discussed by Stevenson [27]. In this way, by
taking into account both effects, a calculation of the energy density indicates that, for
positive and small enough mΦ, the attractive tail dominates. Then, the lowest-energy
state is not the trivial, empty vacuum with φ = 0 but a state with φ �= 0 and a Bose
condensate of symmetric-phase quanta in the k = 0 mode (3).

2
.
2. “Triviality” and the effective potential . – In spite of these interesting aspects, one

could still wonder about different observable consequences. After all, the phenomenology
of the broken-symmetry phase should only depend on the potential near the true mini-
mum (and not at φ = 0) and, in principle, nothing prevents it locally from having exactly
the same shape as in eq. (2). To get insight, let us look at fig. 1. This intuitively illus-

of SSB in Φ4 finds additional motivations when considering the class of approximations to the
effective potential which are consistent with the basic “triviality” of the theory.
(2) Starting from the scattering matrix element M, obtained from Feynman diagrams, one can
construct an inter-particle potential that is is basically the 3-dimensional Fourier transform of
M, see refs. [25, 26].
(3) This 1st-order scenario is implicit in ’t Hooft’s description of SSB [28] :“What we experience
as empty space is nothing but the configuration of the Higgs field that has the lowest possible
energy. If we move from field jargon to particle jargon, this means that empty space is actually
filled with Higgs particles. They have Bose condensed”.This clearly refers to real, physical
quanta. Otherwise, in a 2nd-order picture, Bose condensation of what?
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trates that, if V ′′
eff(φ = 0) > 0, ZPE are expected to be much larger than in a 2nd-order

picture. In the latter case, in fact, SSB is driven by the negative mass squared at φ = 0
while now ZPE have to overwhelm a tree-level potential which otherwise would have no
non-trivial minimum. But what do we exactly mean by saying that ZPE have to be much
larger? The answer is that, now, the ZPE mass scale MH is much larger than the mass
scale mh defined by the quadratic shape of the effective potential at the minimum. To
fully understand this crucial issue let us first recall that this large size of ZPE induced
Coleman and Weinberg to expect that the weak, 1st-order scenario could only work in
the presence of gauge bosons. In a pure Φ4 theory SSB would require to compensate
the positive λφ4 tree-level potential with a negative λ2φ4 ln(φ2/Λ2) 1-loop contribution;
a requirement which lies outside a standard loop-expansion perspective. Instead, they
concluded, with gauge bosons the corresponding 1-loop contribution g4gaugeφ

4 ln(φ2/Λ2)

could well represent the needed driving mechanism if λ ∼ g4gauge.
Nevertheless, there is a way to rearrange things in the effective potential and consis-

tently describe SSB as 1st-order transition. The standard perspective, which is behind
the idea of the perturbative potential V (p)(φ) ∼ λ(p)(φ)φ4, considers the 1-loop contri-
bution as simply renormalizing the coupling λ in the classical potential

(3)
λ

4!
φ4 → λ

4!
φ4(1− 3λ

32π2
ln(2Λ2

√
e/λφ2)

Therefore, including the higher-order leading logarithmic terms, i.e., by replacing

(4) 1− x → 1− x+ x2 − x3... = 1/(1 + x)

the 1-loop minimum would disappear.
But, as emphasized by Stevenson [27], the qualitatively different nature of the two

basic terms in the inter-particle potential between the quanta of the symmetric phase
has a definite counterpart in the structure of the effective potential. Here, the positive
λφ4 background originates from the +λδ3(r) short-range repulsion and the negative ZPE

from the long-range −λ2

r3 attraction. This observation suggests to consider the equivalent
reading of the 1-loop potential as the sum of a classical background + zero-point energy
of free-field fluctuations with mass squared M2(φ) = λφ2/2

(5) V1−loop(φ) =
λφ4

4!
− M4(φ)

64π2
ln

Λ2
√
e

M2(φ)

Since this type of structure is also recovered in higher-order approximations, the simple
1-loop potential can also admit a non-perturbative interpretation as the prototype of a
class of calculations with the same basic structure up to a redefinition of both classical
background and mass parameter M(φ).

This is explicitly illustrated by the Gaussian effective potential [29] which re-sums all
one-loop bubbles and preserves the same structure up to terms that vanish when Λ → ∞:

(6) λ → λG(φ) =
λ

1 + λ
16π2 ln

Λ
MG(φ)

(7) M2(φ) → M2
G(φ) =

λG(φ)φ
2

2
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(8) V1−loop(φ) → VG(φ) =
λG(φ)φ

4

4!
− M4

G(φ)

64π2
ln

Λ2
√
e

M2
G(φ)

The agreement between 1-loop and Gaussian effective potential has to be emphasized
because it gives further insight into the “triviality” of Φ4. If, in the continuum limit,
all interaction effects have to be effectively reabsorbed into the first two moments of a
Gaussian distribution, meaningful approximations to the effective potential should be
physically equivalent to the 1-loop result, i.e., given again by some classical background
+ zero-point energy with some φ−dependent mass.

For this reason, the two approximations considered above produce similar results.
Namely, by defining m2

h as the second derivative of V1−loop(φ) or of VG(φ) at their
minimum, say φ = ±φv, and by defining MH as the value of M(φv) or MG(φv), one finds
MH ∼ Λexp(−1/λ) and the same pattern of scales [10-12] in terms of L = ln(Λ/MH)
and of a cutoff-independent vacuum field v:

(9) λ ∼ L−1 m2
h ∼ v2 · L−1 M2

H ∼ L ·m2
h = K2v2

Here K is a cutoff-independent constant and v is related to φv through a re-scaling given
by the mass ratio, namely

(10) φ2
v ≡ Zφv

2 with Zφ = (MH/mh)
2 ∼ L

Since the vacuum energy Veff(φv) = −M4
H/(128π2) is a Renormalization-Group invariant

quantity [10-12], MH and v emerge as the two invariants I1 = MH and I2 = v associated
with the analysis of the effective potential in the (λ, φ,Λ) 3-dimensional space. For this
reason, v represents the natural candidate to represent the weak scale v ∼ 246 GeV. Note
that in perturbation theory within the standard 2nd-order scenario, where mh ∼ MH ,
there is no v−φv distinction. Instead, here, it is a consequence of minimizing the effective
potential where the large logarithm L = ln(Λ/MH) is effectively transformed into a 1/λ
effect with strong cancelations between formally higher-order and tree-level terms. Yet,
the implications of this two-mass structure may not be entirely clear. These will be
illustrated in the following two subsections.

2
.
3. The coexistence of mh and MH . – To further sharpen the meaning of mh and

MH , let us recall that the ZPE is (one-half of) the trace of the logarithm of the inverse
propagator G−1(p) = (p2 − Π(p)). Therefore, in a free-field theory where Vfree(φ) =
1
2m

2φ2 and |Π(p)| = |Π(p = 0)| ≡ m2, after subtracting constant terms and quadratic
divergences (or using D-dimensional regularization with the identification lnΛ ≡ 1/(4-D)
-1/2(γ − ln(4π)) one finds

(11) (ZPE)free =
1

2

∫
d4p

(2π)4
ln(p2 +m2) = − m4

64π2
(ln

Λ2

m2
+

1

2
)

Instead, in the presence of interactions, where in general Π(p) �= Π(p = 0), things are not
so simple. On the one hand, the derivatives of the effective potential produce (minus)
the n-point functions at zero external momentum so that, by defining φv the minimum
of Veff(φ), one gets

(12) m2
h ≡ V ′′

eff(φv) = |Π(p = 0)| = |G−1(p = 0)|
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On the other hand, ZPE contribute to the effective potential but are not a pure zero-
momentum quantity. Therefore, at the minimum, one can write

(13) ZPE ∼ −1

4

∫ pmax

pmin

d4p

(2π)4
Π2(p)

p4
∼ −〈Π2(p)〉

64π2
ln

p2max

p2min

∼ − M4
H

64π2
ln

Λ2

M2
H

This shows that M2
H , effectively including the contribution of the higher momenta, re-

flects a typical average value |〈Π(p)〉| at non-zero p. In perturbation theory, where
Π(p) ∼ Π(p = 0) up to small corrections, one finds MH ∼ mh. On the other hand, if
MH � mh there must be a non-trivial difference between p = 0 and p �= 0 with deviations
from a standard one-mass propagator.

2
.
4. Lattice simulation of the propagator and the value of MH . – The existence of

deviations from a standard single-particle propagator in the cutoff theory was checked
with a lattice simulation [10] to extractmh from the p → 0 limit of G(p) and to compare it
with the mass MH obtained from its behaviour at higher p2. To this end, the propagator
data were first fitted to the 2-parameter form

(14) Gfit(p) =
Zprop

p̂2 +m2
latt

in terms of the squared lattice momentum p̂2. The data were then re-scaled by (p̂2+m2
latt)

so that deviations from a flat plateau are immediately visible. While in the symmetric
phase no momentum dependence of the mass parameter was observed, in the broken-
symmetry phase there is a transition between two regimes. As pointed out by Stevenson
[30], by rescaling all data with the mass from the higher-momentum fit, the deviations
from constancy become highly significant in the p → 0 limit.

In ref. [10] this was checked on a large 764 lattice where, to obtain a good description
of the propagator data in the full momentum region, one had to use a two-mass form [12]

(15) G(p) ∼ 1− I(p)

2

1

p2 +m2
h

+
1 + I(p)

2

1

p2 +M2
H

with an interpolating function I(p) which depends on an intermediate momentum scale
p0 and tends to +1 for large p2 � p20 and to −1 when p2 → 0. Crucially, extrapolation
toward the continuum limit with various lattices was consistent with the expected scaling
trend M2

H ∼ Lm2
h from Eqs.(9). To this end from the lattice data for the propagator one

extracted a numerical constant c2 which determines the logarithmic slope

(16)
M2

H

m2
h

∣∣∣
latt

∼ L · (c2)−1

The values of (c2)
−1/2 = MH · (mh)

−1 · L−1/2 are reported in table I and, given their
consistency, lead to a final determination

(17) (c2)
−1/2 = 0.67± 0.01 (stat)± 0.02 (sys)

Therefore, to estimate MH , one adopted the following strategy:
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Table I. – For various values of the hopping parameter κ of the 4D Ising model, we report the
mass MH obtained from the higher-momentum propagator data by various authors and the zero-
momentum mh, see [10]. For κ = 0.0749 the three values of MH refer to high-momentum fits
for p̂2 > 0.1, p̂2 > 0.15 and p̂2 > 0.2 respectively on the 764 lattice of ref. [10]. The lattice cutoff
ΛL ∼ π/a and all masses are in units of the inverse lattice spacing a. In the last column, we

report the combination (c2)
−1/2 = MH · (mh)

−1 · L−1/2. The table is adapted from the original
table of ref. [10].

κ MH (mh)
−1 [ln(ΛL/MH)]−1/2 (c2)

−1/2

0.07512 0.2062(41) 5.386(23) 0.606(2) 0.673(14)

0.0751 ∼ 0.200 5.568(16) ∼ 0.603 ∼ 0.671

0.07504 0.1723(34) 6.636(32) 0.587(2) 0.671(14)

0.0749 0.0933(28) 13.00(14) 0.533(2) 0.647(22)

0.0749 0.096(4) 13.00(14) 0.535(3) 0.668(31)

0.0749 0.100(6) 13.00(14) 0.538(4) 0.699(48)

i) first, one used the Gaussian approximation relation (valid in the whole range of
mΦ and not just for mΦ = 0)

(18) M2
H =

λ

3
φ2
v

ii) second, the re-scaling Zφ =
φ2
v

v2 =
M2

H

m2
h

was extracted from the lattice data for the

propagator yielding

(19)
φ2
v

v2
= Zφ ∼ L · (c2)−1

iii) finally, in eq. (18) one used the leading-log relation

(20) λ ∼ (16π2/3) · L−1

In this way, the constant K was determined as

(21) K = (4π/3) · (c2)−1/2 = 2.80± 0.04 (stat)± 0.08 (sys)

(or K ∼ 8π/9) so that for v ∼ 246 GeV one finds

(22) (MH)Theor = Kv = 690± 10 (stat)± 20 (sys) GeV

The above numerical estimate, on the one hand, represents a definite prediction to com-
pare with experiments. On the other hand, it helps to clarify the relation with the more
conventional picture of a cutoff theory with only mh. To this end, we note that, from
relations (9), one finds mh � MH for very large Λ. But MH is Λ−independent so
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that by decreasing Λ also the lower mass increases by approaching its maximun value
(mh)

max ∼ MH when the cutoff Λ is a few times MH . Therefore this maximum value
corresponds to

(23) (mh)
max ∼ (MH)Theor = 690± 10 (stat)± 20 (sys) GeV

in good agreement with the old theoretical upper bound (mh)
max = 670 (80) GeV, see

Lang’s complete review [31]. However, in the real world mh = 125 GeV so that, if there
is a second resonance with MH ∼ 700 GeV, Λ would be extremely large.

3. – Basic phenomenology of the second resonance

The analysis of sect. 2 represents a consistent description of SSB in a Φ4 theory. At
the same time, given the large value MH ∼ 700 GeV, including the ZPE of all known
gauge and fermion fields at the Fermi scale would represent a small radiative correction
(4). As in the early days of the Standard Model, one could thus adopt the perspective of
explaining SSB within the pure scalar sector and restrict the analysis to a region around
the Fermi scale which is not much larger than a few TeV. Then, once the perturbative
λ(p)(v) and the scalar coupling λ(v) responsible for SSB have the same value as in eq.
(1), their different evolution at extremely large energies should remain unobservable.
Checking our proposed mechanism for SSB is then demanded to the observation of the
second resonance and of its phenomenology.

As for the relevant phenomenology, a Higgs resonance with mass MH ∼ 700 GeV is
usually believed to be a broad resonance due to strong interactions in the scalar sectors.
This belief derives from two arguments, namely the definition of MH from the quadratic
shape of the potential, which is not valid in our case, and the tree-level calculation of
longitudinal WW scattering where, at high energy, due to an incomplete cancelation of
graphs, the mass in the scalar propagator is effectively promoted to coupling constant.
For sake of clarity we will consider the second argument in a high-energy regime where
the Higgs field propagator is dominated by the second resonance, as in the standard one-
pole calculations. From the tree-level expression reported by Veltman and Yndurain [32]
we then get

(24) Aww =
g2

4M2
w

[atree(s) + atree(t) + atree(u)]

where g = ggauge, M
2
w = g2v2/4 and the tree-level amplitude is

(25) atree(x) = x+
x2

M2
H − x

Therefore, for |x| � M2
H as in a multi-TeV collider, the tree-level amplitude is governed

(4) By subtracting quadratic divergences or using dimensional regularization, the logarithmic
divergent terms in the ZPE of the various fields are proportional to the fourth power of the mass.
Thus, in units of the pure scalar term, one finds (6M4

w + 3M4
Z)/M

4
H � 0.002 and 12m4

t/M
4
H �

0.05.
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by a contact coupling

(26) λ0 =
3M2

H

v2

as in a pure Φ4 theory. Notice that the tree-level calculation yields λ0 while, from the
Φ4 effective potential, we found

(27) λ(v) =
3M2

H

φ2
v

=
3m2

h

v2
=

m2
h

M2
H

λ0

which derives from the assumed “triviality” of the theory. To understand the replace-
ment, let us recall the precise formulation of the Equivalence Theorem given by Bagger
and Schmidt [33]. This is a non-perturbative statement in the sense that it holds to all
orders in the scalar self-interactions, up to O(g2) corrections. One then expects that
resumming all higher-order graphs in longitudinal WW scattering gives the same result
as in a pure Φ4 if Goldstone χχ diagrams are resummed with the β−function of Φ4. This
resummation, for MH ∼ 700 GeV, means to replace λ0 ∼ 24 with λ(v) ∼ 0.78. For this
reason, no large effect proportional to λ0 should be visible at the Fermi scale or at the
relatively close energies of a multi-TeV collider (where both λ(E) and λ(p)(E) differ from
their common value 0.78 for negligible terms). In this sense, the second resonance will
mimic a conventional Higgs particle of mass MH provided the cutoff independent ratios
(M2

H/v) and (MH/v)2, in the 3- and 4-order scalar couplings, are re-scaled as follows [34]:

(28)
M2

H

2v
→ ε1 ·

M2
H

2v

M2
H

8v2
→ ε2 ·

M2
H

8v2

with

(29) ε21 = ε2 ≡ 1

Zφ
=

m2
h

M2
H

We can thus predict Γ(H → WW ) and Γ(H → ZZ) from their conventional values by
replacing the large width Γconv(H → WW+ZZ) ∼ GFM

3
H with the corresponding value

Γ(H → WW + ZZ) ∼ MH(GFm
2
h) which retains the same phase-space factor MH but

has a coupling re-scaled by the small ratio m2
h/M

2
H ∼ 0.032. Numerically, for MH ∼ 700

GeV, from the results of ref. [35], this gives

(30) Γ(H → ZZ) ∼ MH

700 GeV
· m2

h

(700 GeV)2
50.1 GeV ∼ MH

700 GeV
· 1.6 GeV

(31) Γ(H → WW ) ∼ MH

700 GeV
· m2

h

(700 GeV)2
102.6 GeV ∼ MH

700 GeV
· 3.3 GeV

On the other hand, the decays into fermions, gluons, photons...should be unchanged and
can be taken from [35] yielding

(32) Γ(H → fermions + gluons + photons...) ∼ MH

700 GeV
· 26 GeV
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Therefore, for MH = 670÷710 GeV, one would expect a total width ΓH ≡ Γ(H → all) =
30÷ 31 GeV. The above estimate, however, does not account for the new contributions
from the decays of the heavier resonance into the lower-mass state at 125 GeV. These
include the two-body decay H → hh, the three-body processes H → hhh, H → hZZ,
H → hW+W− and the higher-multiplicity final states allowed by phase space. For this
reason, the above value ΓH ∼ 30 GeV should likely represent a lower bound. It is not so
simple to evaluate the new contributions to the total decay width because of the h−H
overlapping which makes this a non-perturbative problem. Nevertheless, in sect. 4 we
will show that some LHC data can be used to constrain experimentally the branching
ratio B(H → hh) � 0.12÷ 0.15 at the 95% C.L. thus leading to ΓH < 36 GeV.

Given this theoretical uncertainty, in ref. [13], one considered a test in the “golden”
4-lepton channel that does not require the knowledge of the total width and only relies
on two assumptions:

a) a resonant 4-lepton production through the chain H → ZZ → 4l

b) the estimate of Γ(H → ZZ) in eq. (30)

Therefore, by defining γH = ΓH/MH , we find a fraction

(33) B(H → ZZ) =
Γ(H → ZZ)

ΓH
∼ 1

γH
· 50.1
700

· m2
h

(700 GeV)2

that will be replaced in the cross section approximated by on-shell branching ratios

(34) σR(pp → H → 4l) ∼ σ(pp → H) ·B(H → ZZ) · 4B2(Z → l+l−)

This should be a good approximation for a relatively narrow resonance so that one
predicts a particular correlation

(35) γH · σR(pp → H → 4l) ∼ σ(pp → H) · 50.1
700

· m2
h

(700 GeV)2
· 4B2(Z → l+l−)

which can be compared with the LHC data.

Since 4B2(Z → l+l−) ∼ 0.0045, to check our prediction, the last ingredient is the total
production cross section σ(pp → H) which, in our case, will mainly proceed through the
gluon-gluon Fusion (ggF) process. In fact, the other production through Vector-Boson
Fusion (VBF) plays no role here, once the large coupling to longitudinal W’s and Z’s is
suppressed by the small coefficient m2

h/M
2
H ∼ 0.032. As a consequence the traditional

large VBF cross section σVBF(pp → H) ∼ 300 fb is reduced to about 10 fb and can
be safely neglected in comparison with the pure ggF contributions O(103) fb. Indeed,
for 13 TeV pp collisions and and with a typical ±15% uncertainty (due to the parton
distributions, to the choice of μ in αs(μ) and to other effects), we will adopt the value [36]
σggF(pp → H) = 1090(170) fb which also accounts for the range MH = 660÷ 700 GeV.

In conclusion, for mh = 125 GeV, one obtains a prediction which, for not too large
γH where eq. (34) looses validity, is formally insensitive to the value of ΓH and can be
directly compared with the 4-lepton data

(36) [γH · σR(pp → H → 4l)]theor ∼ (0.011± 0.002) fb
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4. – Some experimental signals from LHC

To test our definite prediction (MH)Theor = 690 ±10(stat) ±20(sys) GeV, one should
look for deviations from the background nearby. This means that local deviations from
background should not be downgraded by the so called “look elsewhere” effect. At the
same time, given the present energy and luminosity of LHC, the second resonance, if
there, is too heavy to be seen unambiguously in all possible channels. In this sense, one
should remember the h(125) discovery which, at the beginning, was giving no signals in
the predominant bb̄ and τ+τ− decay channels.

After this premise, given the expected large branching ratio B(H → tt̄) = (75÷80)%,
the most natural place to look for the new resonance would be in the tt̄ channel. However,
in the relevant region of invariant mass m(tt̄) = 620÷ 820 GeV, CMS measurements [37]
give a background cross section σ(pp → tt̄) = 107±7.6 pb which is about 100 times larger
than the expected signal σ(pp → H → tt̄) � 1 pb (5). For this reason, in refs. [13-16]
the phenomenological analysis was focused on available channels with relatively smaller
background, namely:

i) ATLAS ggF-like 4-lepton events

ii) ATLAS high-mass inclusive γγ events

iii) ATLAS and CMS (bb̄+ γγ) events

iv) CMS γγ events exclusively produced in pp double-diffractive scattering

4
.
1. The ATLAS ggF-like 4-lepton events. – As a first sample, we started from the

ATLAS charged 4-lepton channel [40, 41] by considering those events that, for their
characteristics, can be interpreted as being produced through the ggF mechanism. For
these 4-lepton data, the ATLAS experiment has performed a sophisticated analysis where
the ggF events, depending on the degree of contamination with the background, are
divided into four mutually exclusive categories: ggF-high-4μ, ggF-high- 2e2μ, ggF-high-
4e, ggF-low. The only sample which is homogeneous from the point of view of the
selection and has a sufficient statistics is the ggF-low category whose number of events
are reported in table II together with the background estimated by ATLAS, see ref. [41].
To avoid spurious fluctuations which may be due to migration of events between adjacent
bins, we have followed the same criterion adopted in fig. 5 of the other ATLAS paper
ref. [42] where events were grouped in larger bins of 60 or even 80 GeV (6)

From this table II, one gets the same impression as from fig. 5 of ref. [42] in the same
energy region. Namely, there is a +2.5 σ excess over the background, in the bin centered
around 680 GeV, which is followed by a −3 σ defect in the bin centered around 740 GeV.
The simplest explanation for these two simultaneous features would be the existence of
a resonance of mass MH ∼ 700 GeV which, above the Breit-Wigner peak, produces the
characteristic negative interference pattern proportional to (M2

H − s).

(5) Interestingly, the process pp → tt̄tt̄ has now been observed by ATLAS [38] and CMS [39].
Both experiments find cross sections which are somewhat larger than the SM prediction σB(pp →
tt̄tt̄) = 12.0 ± 2.4 fb. Namely, 22.5+6.6

−5.5 fb (ATLAS) and 17.7+4.4
−4.0 fb (CMS). This excess could

indicate the process pp → H with the H resonance decaying into a virtual pair of h = h(125)
followed by two h → tt̄ decays. Therefore, it would be interesting to determine the invariant
mass distribution of the tt̄tt̄ system.
(6) This is because in the region of invariant mass around 700 GeV the energy resolution varies
considerably from about 12 GeV for 4e events, to 19 GeV for 2e2μ up to 24 GeV for 4μ.
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Table II. – For luminosity 139 fb−1, we report the observed ATLAS ggF-low events and the
corresponding estimated background [41] in the range of invariant mass M4l = E = 530 ÷ 830
GeV. To avoid spurious fluctuations, due to migration of events between neighbouring bins, we
have followed the same criterion as in fig. 5 of ref. [42] by grouping the data into larger bins
of 60 GeV, centered at 560, 620, 680, 740 and 800 GeV. These correspond to the 10 bins of
30 GeV, centered respectively at: 545(15)÷ 575(15) GeV, 605(15)÷ 635(15) GeV, 665(15) ÷
695(15), 725(15)÷755(15) GeV and 785(15)÷ 815(15) GeV, see ref. [41]. In this energy range,
the uncertainties in the background are below 5% and will be neglected.

E[GeV] NEXP(E) NB(E) NEXP(E)−NB(E)

560(30) 38±6.16 32.0 6.00± 6.16

620(30) 25±5.00 20.0 5.00± 5.00

680(30) 26±5.10 13.04 12.96± 5.10

740(30) 3±1.73 8.71 −5.71± 1.73

800(30) 7±2.64 5.97 1.03± 2.64

To describe the data in table II, one adopted the model cross section of ref. [12, 13]

(37) σT = σB +
2(M2

H − s) ΓHMH

(s−M2
H)2 + (ΓHMH)2

√
σBσR +

(ΓHMH)2

(s−M2
H)2 + (ΓHMH)2

σR

where, together with the mass MH and total width ΓH of the resonance, one introduces
a background cross section σB = σB(E) and the resonating peak cross section σR.

An accurate description of the ATLAS background can be obtained in terms of a
power law NB(E) ∼ A · (710 GeV/E)ν with A ∼ 10.55 and ν ∼ 4.72. Then, by simple
redefinitions, the theoretical number of events can be expressed as

(38) NTH(E) = NB(E) +
P 2 + 2P · x(E) ·

√
NB(E)

γ2
H + x2(E)

Table III. – We report the observed ATLAS ggF-low events and our theoretical prediction eq.
(38) for MH = 706 GeV, γH = 0.041, P = 0.14.

E[GeV] NEXP(E) NTH(E) χ2

560(30) 38±6.16 36.72 0.04

620(30) 25±5 25.66 0.02

680(30) 26±5.10 26.32 0.00

740(30) 3±1.73 3.23 0.02

800(30) 7±2.64 3.87 1.40
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R(pp  H  4l) = 0.23  fb

Fig. 2. – The values NEXP(E) in table II vs. the corresponding NTH(E) eq. (38) (the red
continuous line). The resonance parameters are MH = 706 GeV, γH =0.041, σR = 0.23 fb and
the ATLAS background is approximated as NB(E) = A · (710 GeV/E)ν with A = 10.55 and
ν = 4.72.

where x(E) = (M2
H − E2)/M2

H , NR = σR · A · 139 fb−1 denotes the extra events at the
resonance peak for an acceptance A and finally P ≡ γH

√
NR.

As for the acceptance, one adopted a value A ∼ 0.38 by averaging the two extremes,
0.30 and 0.46, for the ggF-like category of events [40]. As a consequence, the resonance
parameters are affected by some uncertainty. Nevertheless, to have a first check of our
picture, we fitted with eq. (38) the experimental number of events in table II. The
results were: MH = 706(25) GeV, γH = 0.041 ± 0.029 (corresponding to a total width
ΓH = 29± 20 GeV) and P = 0.14± 0.07. From these we obtain NR ∼ 12 and σR ∼ 0.23
fb with very large errors. Our theoretical values are shown in table III and a graphical
comparison in fig. 2.

The quality of the fit is good but, with the exception of the mass, errors are large
and a test of our picture is not so stringent. Still, with the partial width of sect. 3,

600 650 700 750
E [GeV]

0.5

1

1.5

2

2.5

3

 T

ATLAS 2-photon data in the range 
600 GeV < E < 770 GeV

only background

Fig. 3. – The fit with eq. (37) and σR = 0 to the data in table IV, transformed into cross-sections
in fb. The chi-square value is χ2 = 14 and the background parameters A = 1.35 fb and ν = 4.87.
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Table IV. – The ATLAS number N = N(γγ) of events, in bins of 16 GeV and for luminosity
139 fb−1, for the range of invariant mass μ = μ(γγ) = 600 ÷ 770 GeV. These values were
extracted from fig. 3 of [43] because the relevant numbers are not reported in the companion
HEPData file. In our fits we assumed as statistical errors the square root of the counts as for a
Poisson distribution.

μ 604 620 636 652 668 684 700 716 732 748 764

N 349 300 267 224 218 235 157 146 137 108 120

Γ(H → ZZ) ∼ 1.6 GeV, and fixing ΓH to its central value of 29 GeV, we find a branching
ratio B(H → ZZ) ∼ 0.055 which, for the central value σggF(pp → H) ∼ 923 fb of
ref. [36] at MH = 700 GeV, would imply a theoretical peak cross section (σR)

theor =
923 · 0.055 · 0.0045 ∼ 0.23 fb which coincides with the central value from our fit. Also
from the central values 〈σR〉 = 0.23 fb and 〈γH〉 = 0.041, we find 〈σR〉 · 〈γH〉 ∼ 0.0093
fb, consistently with eq. (36).

4
.
2. The ATLAS high-mass γγ events . – Searching for further signals, in refs. [15,16]

one considered the invariant mass distribution of the inclusive diphoton production as
measured by ATLAS [43] in the range of invariant mass 600 ÷ 770 GeV. The relevant
entries in table IV were extracted from fig. 3 of [43] because the numerical values are
not reported in the companion HEPData file. By parameterizing the background with a
power-law form σB(E) ∼ A·(685 GeV/E)ν to the data in table 3 gives a good description
of all data points, except the sizeable excess at 684 GeV (estimated by ATLAS to have
a local significance of more than 3-sigma) see fig. 3.

This isolated discrepancy illustrates how a (hypothetical) new resonance might remain
hidden behind the large background almost everywhere, the main signal being just a
modest interference effect. For this reason, with the exception of the mass MH = 696(13)
GeV, the total decay width is determined very poorly. Namely ΓH = 15+30

−12 GeV, in
agreement with the other loose determination ΓH = 29(20) GeV from the 4-lepton data.
In fig. 4 we report three fits with the full eq. (37) for ΓH = 15, 25 and 35 GeV. In
conclusion, the localized 3 sigma excess at 684 GeV admits two different interpretations:

a) a statistical fluctuation above a pure background, see fig. 3
b) the signal of a heavy, relatively narrow resonance, see fig. 4

4
.
3. ATLAS and CMS (bb̄+ γγ) events . – The ATLAS and CMS Collaboration have

also considered the search for new resonances decaying, through two intermediate h(125)
scalars, into the peculiar final state made by a bb̄ quark pair and a γγ pair. In particular,
in [44] one has been considering the cross section for the full process

(39) σ(full) = σ(pp → X → hh → bb̄+ γγ)

For a spin-zero resonance, the 95% upper limit σ(full) < 0.16 fb, for invariant mass of
600 GeV, was found to increase by about a factor of two, up to σ(full) < 0.30 fb in a
plateau 650 ÷ 700 GeV, and then to decrease for larger energies see fig. 5. The local
statistical significance is modest, about 1.6-sigma, but the relevant mass region MX ∼
675(25) GeV is precise and agrees well with our prediction. Interestingly, if the cross
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Fig. 4. – Three fits with eq. (37) to the data in table IV, transformed into cross-sections in fb.
The χ2−values are 7.5, 8.8, 10.2, respectively for ΓH = 15, 25 and 35 GeV.

section is approximated as

(40) σ(full) ∼ σ(pp → H) ·B(H → hh) · 2 ·B(h → bb̄)B(h → γγ)

the CMS 95% upper bound σ(full) < 0.30 fb, for σ(pp → H) ∼ 1 pb, becomes an upper
bound B(H → hh) < 0.12. In view of the mentioned non-perturbative nature of the
decay process H → hh this represents a precious indication.

The analogous ATLAS plot is reported in fig. 6 (which is the same fig. 15 of the
ATLAS paper [45]). Again, one finds a modest 1.2-sigma excess in the plateau 650(25)
GeV which is followed immediately by a 1.4-sigma defect which could be indicative
of a negative above-peak (M2

H − s) interference effect of the same type found in the
ATLAS 4-lepton data. From the observed value σ(pp → H → hh) < 150 fb, this gives
B(H → hh) < 0.15, consistent with the CMS determination. Since the 3-body decays
H → hhh, H → hW+W−, H → hZZ should give a modest contribution to the total
width, from the estimates of sect. 3, we would then deduce ΓH < 36 GeV.

4
.
4. CMS γγ events exclusively produced in pp double-diffractive scattering . – Finally,

the CMS and TOTEM Collaborations have been searching for high-mass photon pairs
exclusively produced in pp double-diffractive scattering, i.e., when both final protons
have large xF . For our scopes, the relevant information is contained in fig. 7 taken
from [46]. In the range of invariant mass 650(40) GeV, and for a statistics of 102.7 fb−1

the observed number of γγ events was NOBS ∼ 76(9) to be compared with an estimated
background NBKG ∼ 40(6) that is quoted to be the best estimate by the experiment,
with a relatively small uncertainty. In the most conservative case, this is a local 3-sigma
effect and is the only statistically significant excess in the plot.

4
.
5. Experimental summary . – Let us summarize the previous analysis of LHC data:
i) after observing the +2.5 sigma excess at 680(30) GeV and the simultaneous −3.3

sigma defect at 740(30) GeV in the ATLAS ggF-like 4-lepton events, a fit to this data
was performed in [15,16]. The resulting mass value was MH = 706(25) GeV
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Fig. 5. – Expected and observed 95% upper limit for the cross section σ(pp → X →
h(125)h(125) → bb̄+ γγ) observed by the CMS Collaboration [44].

ii) after observing the +3 sigma effect at 684(16) GeV in the inclusive ATLAS γγ
events, a fit to this data was performed in [15,16]. The resulting mass was MH = 696(13)
GeV

Furthermore, one should note
iii) the overall +2 sigma effect in the (bb̄+γγ) channel which is obtained by combining

the excess of events observed by ATLAS at 650(25) GeV and the corresponding excess
observed by CMS at 675(25) GeV

iv) the +3 sigma excess at 650(40) GeV in the distribution of CMS-TOTEM γγ
events exclusively produced in pp double-diffractive scattering

Since the above determinations i)-iv) are well aligned within the uncertainties, one
can try to combine the mass values by obtaining (MH)comb ∼ 685(10) GeV in very good
agreement with our prediction (MH)Theor = 690 ±10 (stat) ± 20(sys) GeV. I emphasize
again that, when comparing with a definite prediction, one should look for deviations from
the background nearby so that local significance is not downgraded by the so called “look
elsewhere” effect. Thus, in view of the small correlation of the above determinations, one
could also argue that the cumulative statistical evidence for a new resonance around 700
GeV is close to (if not above) the traditional 5-sigma level. Anyway, the present situation
is unstable and could soon be resolved with two still missing sets of RUN2 data, namely

a) the full CMS charged 4-lepton events
b) the full CMS inclusive high-mass γγ events

By adding these two crucial sets of data, the present, non-trivial statistical significance
could become an important new discovery.

5. – Summary and conclusions

The perturbative effective potential of the Standard Model, say V (p)(φ), exhibits a
second minimum vtrue = 1026 ÷ 1031 GeV, well beyond the Planck mass, which is much
deeper than the electroweak vacuum at v ∼ 246 GeV, i.e., V (p)(vtrue) = −(10100÷10120)
(GeV)4 vs. V (p)(v) ∼ −108 (GeV)4. Since it is uncertain that gravitational effects can
become so strong to stabilize the potential, one has accepted the metastability scenario
in a cosmological perspective. This perspective is needed to explain why the theory
remains trapped into the tiny electroweak minimum but requires to control the properties
of matter in the extreme conditions of the early Universe. As an alternative, we have
reviewed the completely different idea of an effective potential which, as at beginning
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Fig. 6. – Expected and observed 95% upper limit for the cross section σ(pp → X → h(125)h(125))
extracted by the ATLAS Collaboration from the final state (bb̄ + γγ). The figure is taken from
the talk given by Bill Balunas at Higgs 2022 and is the same fig. 15 of the ATLAS paper [45].

of the Standard Model, is restricted to the pure Φ4 sector but is consistent with the
now existing analytical and numerical studies. In this approach, where the absolute
minimum is at v ∼ 246 GeV, the effective potential, beside the mass mh = 125 GeV,
defined by its quadratic shape at the minimum, should exhibit a second much larger
mass scale MH associated with the zero-point energy which determines the potential
depth. By combining analytical and numerical indications, one arrives to the estimate
(MH)theor = 690 ± 10 (stat) ± 20 (sys) GeV. With such a large mass, the ZPE of all
known gauge and fermion fields would represent a small radiative correction. Thus, by
restricting to a region around the Fermi scale, say a few TeV, the different evolution of
λ(p)(φ) and of λ(φ) at asymptotically large φ should remain unobservable and the check
is demanded to the experimental observation of the second resonance.

In spite of its large mass, however, the second resonance should couple to longitudinal
W’s with the same typical strength as the low-mass state at 125 GeV and thus represent
a relatively narrow resonance of width ΓH = 30÷ 36 GeV, mainly produced at LHC by
gluon-gluon fusion. For this reason, it is remarkable that in the LHC data one can find
indications for a new resonance in the expected mass range with a statistical significance
that is far from negligible and could become an important new discovery by just adding
two missing samples of RUN2 data.

Before concluding, we will briefly discuss the possible implications of this two-mass
structure for radiative corrections. A propagator structure as in eq. (15) suggests that,
for very large Λ, there should be two vastly different mass-shell regions in Minkowski
space, as when the spectral density has not the standard single-peak structure. This
brings in touch with the work of van der Bij [47] where a propagator form which resembles
eq. (15) was considered. On the basis of other arguments, quite unrelated to the effective
potential, he speculated that the physical Higgs boson could be a mixture of two states
with a spectral density approximated by two δ−functions and propagator (−1 ≤ η ≤ 1)

(41) G(p) ∼ 1− η

2

1

p2 +m2
h

+
1 + η

2

1

p2 +M2
H

This structure could be used in radiative corrections, for instance in the ρ−parameter.
For masses below 1 TeV, where the 2-loop correction is completely negligible, one can
restrict to the one-loop level, where the two branches eq. (41) do not mix. Then, the
net effect would be to replace in the main logarithmic term an effective mass meff ∼
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Fig. 7. – The number of γγ events exclusively produced in pp double-diffractive scattering as
reported in [46]. In the range 650(40) GeV, the observed number was NOBS ∼ 76(9) to be
compared with an estimated background NBKG ∼ 40(6).

√
mhMH (MH/mh)

η/2. In our case, the spectral function has a crossover region and
would not be the simple sum of two δ−functions. Nevertheless, one could still consider
this idea and explore how well the mass parametermeff , obtained indirectly from radiative
corrections agrees with themh = 125 GeV, measured directly at LHC. Here we just report
the two extreme indications from the PDG review [17]. Namely, from the experimental
set (ALR, MZ , ΓZ , mt), one finds the pair [meff = 38+30

−21 GeV, αs(Mz) = 0.1182(47)].

While, from the set (AFB(b, c), MZ , ΓZ , mt), the other pair [meff = 348+187
−124 GeV,

αs(Mz) = 0.1278(50)].

These two extreme cases show that, at this level of precision, one should estimate
the uncertainty due to strong interactions. This enters through the contribution of
hadronic vacuum polarization to Δα(Mz), but also more directly through the value of
αs(Mz). More precisely, in the two examples considered above, this latter uncertainty
enters through rs(Mz), the strong-interaction correction to the quark-parton model in
σ(e+e− → hadrons) at center of mass energy Q = Mz. Since, for a given mt, rs(Mz) and
meff are positively correlated in the hadronic W and Z widths, in a global fit, through
the W and Z widths and the LEP1 peak cross sections, the uncertainty in rs(Mz) will
propagate and affect all quantities, even the pure leptonic widths and asymmetries.

This uncertainty should not be underestimated because, in the (e+e− → hadrons)
data from PETRA, PEP, TRISTAN there is a sizeable excess with respect to the per-
turbative QCD prediction [48]. By including all data up to LEP2, the excess can be
estimated at the 4-sigma level [49]. Therefore, since a small coupling does not guarantee,
by itself, a good convergence of the perturbative expansion, one should seriously consider
that, even at large center of mass energies, the experimental quantity rEXP(Q) obtained
from the data can sizeably differ from its theoretical prediction rTH

s (Q) = 1+αs(Q)/π+...
computed from the first few terms. If translated into the QCD correction, the observed
excess corresponds to replacing the higher range of values αs(Mz) � 0.128 in rTH(Mz)
and, if used to evaluate the EW corrections, would increase considerably the value of meff

obtained from many experimental quantities. As such, the present view, that the Higgs
mass parameter extracted indirectly from radiative corrections agrees perfectly with the
mh = 125 GeV measured directly at LHC, is not free of ambiguities.
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[5] Degrassi G., Di Vita S., Miró J. E., Espinosa J. R., Giudice G. F., Isidori G. and

Strumia A., JHEP, 08 (2012) 098.
[6] Salvio A., Strumia A., Tetradis N. and Urbano A., JHEP, 09 (2016) 054.
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