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Summary. — Graph Neural Networks (GNNs) are machine-learning algorithms
particularly suitable for modeling data with complex topological correlations. In
this communication, their application to jet flavour-tagging for the ATLAS experi-
ment at the Large Hadron Collider is presented. A new GNN algorithm to identify
jets containing heavy-flavour hadrons by representing them as graphs of tracks and
silicon hits is illustrated. The performance of the modern flavour-tagging algorithms
poses challenges when applied on simulated events containing multiple jets, as they
reduce the statistical precision of the simulated samples. To overcome this, a GNN-
based technique that increases the statistical power of the samples by weighting
events based on their likelihood of containing flavour-tagged jets is described.

1. – Introduction

The studies presented in this communication revolve around the application of Graph
Neural Networks (GNNs) to jet flavour-tagging to increase the physics reach of the AT-
LAS experiment [1] at the LHC [2]. GN1, the ATLAS new GNN-based jet flavour-tagging
algorithm, introduced in [3], is described. Then, an innovative technique using GNNs
to parametrise jet flavour-tagging efficiencies, described in details in [4], is presented. It
allows to increase the statistical power of simulated samples, which are used to model
the backgrounds for many analyses conducted in ATLAS.

2. – Jet flavour-tagging

Flavour-tagging is a method used in particle physics to identify the flavour of hadrons
within a jet. Jets containing b-hadrons are labeled as b-jets, jets containing c-hadrons
but no b-hadrons are labeled as c-jets, jets containing τ leptons but no b or c-hadrons
are labeled as τ -jets, and the remaining jets are labeled as light-flavour jets.
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Fig. 1. – Visualisation of the features that distinguish b-jets (in blue) from light-flavour jets
(in red). The displaced decays of b-hadrons lead to the presence of secondary vertices in the
b-jets. Tracks associated to the charged particles produced in the decay can have large impact
parameters.

The long lifetime of b-hadrons, which is on the order of 1.5 ps, allows them to fly
significant distances before decaying. Hence, b-jets can be identified through the obser-
vation of their tracks’ large impact parameters (1) and the displaced secondary vertices
resulting from their decays (fig. 1). In addition, b-hadrons have relatively high masses
and decay multiplicities.

The flavour-tagging algorithms used in ATLAS are trained on simulated data. They
aim to strike a balance between two objectives: a high tagging efficiency, meaning a high
proportion of correctly tagged jets, and a low mistagging rate, meaning a low proportion
of jets that are incorrectly tagged. The performance of the algorithms is contingent on
the chosen Working Point (WP), which is the desired efficiency, and the specific physics
scenario being analyzed.

Flavour-tagging is an essential tool in many areas of particle physics, such as the study
of the properties of the Higgs boson, the search for new physics beyond the Standard
Model, and the study of the properties of the quarks and gluons themselves [5-7].

3. – Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks that are designed to
operate on graph-structured data. A graph is a collection of nodes (or vertices) and edges
that connect them. Graphs can be used to represent a wide variety of data types, such as
social networks and molecular structures. In particle physics, their applications are being
extensively explored, addressing jet flavour-tagging, tracking, particle reconstruction and
event classification among many others [8].

(1) The impact parameter of a track is defined as the minimum distance between the track and
the primary interaction point.
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Fig. 2. – Input features to the GN1 model [3]. Basic jet kinematics, along with information
about the reconstructed track parameters and constituent hits are used. Shared hits are hits
used on multiple tracks which have not been classified as split by the cluster-splitting neural
networks [9], while split hits are hits used on multiple tracks which have been identified as
merged (3). A hole is a missing hit, where one is expected, on a layer between two other hits
on a track. The track leptonID is an additional input to the GN1 Lep model.

GNNs are typically composed of multiple layers of neural networks, each of which
operates on the nodes of the graph. In each layer, the network performs a computation on
the node and its neighboring nodes, using the edges of the graph to define the connections
between the nodes. The computation typically involves a combination of linear and non-
linear operations, such as matrix multiplications and activation functions.

One of the key features of GNNs is that they can learn to propagate information
through the graph, allowing them to make predictions or perform other tasks on the
entire graph, rather than just on individual nodes. This makes them well suited for tasks
such as node classification, link prediction, and graph classification.

4. – GN1

The GN1 [3] algorithm is the state-of-the-art GNN-based flavour-tagging algorithm
used by the ATLAS experiment. It utilizes fully connected graph representations of jets,
with the jet’s associated tracks serving as the nodes. It is trained to operate on vector
representation of tracks to perform jet flavour-tagging. At the same time, it performs
track classification and two-track vertexing, which are defined as auxiliary tasks that
guide the GNN toward an understanding of the underlying physics described in sect. 2.
These three tasks exemplify the capability of GNNs of performing graph classification,
link prediction and node classification, respectively.
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Fig. 3. – The network architecture of GN1 [3]. Inputs are fed into a per-track initialisation
network, which outputs an initial latent representation of each track. These representations are
then used to populate the node features of a fully connected graph network. After the graph
network, the resulting node representations are used to predict the jet flavour, the track origins,
and the probability of each track pair to belong to a common vertex.

4
.
1. Inputs and architecture. – Figure 2 shows the variables that are used for

representing the tracks as input for the GN1 and GN1 Lep (2) models.
The architecture of the GN1 algorithm is schematized in fig. 3. It is composed of a

Feed Forward Neural Network (FFNN) that transforms the input vector representation
of each track into an higher-dimensional one; a GNN that processes the transformed
representations to create new ones which embed information about the overall structure
of the graph; and three FFNNs that use different combinations of the resulting track
representations to predict the flavour of the jet, the origin of the tracks, and the presence
of two-track secondary vertices.

4
.
2. Training and performance. – GN1 is trained to minimize a total loss function

Ltotal through a supervised gradient-descent procedure:

(1) Ltotal = Ljet + αLvertex + βLtrack.

The terms on the right side of eq. (1) are the losses assigned to the FFNNs responsible
for the graph and node classification, and the link prediction tasks. These losses are
designed to target truth-labels derived from the simulation. Ljet targets the jet-flavour
labels (b, c, or light). Ltrack targets the track-labels as defined in fig. 4 after analysing
their formation process. Lvertex targets track-pair labels, where a value of 1 is assigned
if neither track is labelled as Fake or Pileup. The link prediction network assigns binary
labels for each track-pair, with a value of 1 if the two tracks are predicted to originate
from the same point in space. Therefore, the network is trained to predict links only for
tracks which are not fake or from Pileup and that come from the same point. The values
of α = 1.5 and β = 0.5 are chosen to ensure that Ljet converges to a larger value than
Lvertex and Ltrack, to reflect the priority of the jet-classification task as the final goal of
GN1.

(2) GN1 Lep includes an additional input, leptonID, which indicates whether a track in the
jet was used in the reconstruction of an electron, a muon, or neither. This input is useful as
heavy-flavour hadrons can decay semi-leptonically. The presence of a reconstructed lepton in a
jet can provide valuable information about the jet’s flavour.
(3) In high-pT dense jet cores, tracks are tightly packed and the distance between them is similar
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Fig. 4. – Truth origins which are used to categorise the physics process that led to the production
of a track [3]. Tracks are matched to charged particles using the truth-matching probability [9].
A truth-matching probability of less than 0.5 indicates that reconstructed track parameters are
likely to be mismeasured and may not correspond to the trajectory of a single charged particle.
The “OtherSecondary” origin includes tracks from photon conversions, K0

S and Λ0 decays, and
hadronic interactions.

(a) (b)

Fig. 5. – The c-jet and light-jet rejections as a function of the b-jet tagging efficiency for jets
in a simulated tt̄ sample, with transverse momentum 20 < pT < 250GeV (a); and for jets in a
simulated Z′ sample, with transverse momentum 250 < pT < 5000GeV (b) [3].

The performance of a jet flavour-tagging algorithm can be measured by its ability to
accurately reject jets with different flavours at a specified jet flavour-tagging WP. This
can be visualized using Receiver Operating Characteristics (ROC) curves, which plot the
proportion of correctly tagged jets against the rate of mistagged jets for any WP. The
larger the area under the ROC curve, the better the performance. Figure 5 illustrates
the b-tagging ROC curves of DL1r (4) [10], GN1, and GN1Lep. At a b-jet tagging
efficiency of 70%, GN1 outperforms DL1r light-flavour (c)-jet rejection by a factor of
∼ 1.8(∼ 2.1) for simulated jets coming from tt̄ decays with transverse momentum pT
between 20 and 250GeV. For simulated jets coming from Z ′ decays with transverse
momentum pT between 250 and 5000GeV the light-flavour (c)-jet rejection improves by
a factor ∼ 6(∼ 2.8) for a comparative 30% b-jet efficiency.

Figure 6 exemplifies the pivotal role that the node classification and link prediction
tasks play in boosting the performance of the GN1 algoritm.

to the size of the sensor, which leads to merged clusters and tracks that share hits.
(4) DL1r is the ATLAS FFNN-based jet flavour-tagging algorithm that preceded GN1.
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Fig. 6. – The c-jet (left) and light-jet (right) rejections as a function of the b-jet tagging efficiency
for tt̄ jets with transverse momentum 20 < pT < 250GeV, for the nominal GN1, in addition
to configurations where no (GN1 No Aux), only the track classification (GN1 TC) or only the
vertexing (GN1 Vert) auxiliary objectives are deployed [3]. Binomial error bands are denoted
by the shaded regions.

5. – Truth flavour-tagging

The simplest way of using jet flavour-tagging algorithms to identify jets both in sim-
ulated and real data samples can be defined as “pass-or-fail”, meaning that only the jets
selected with a given WP are considered as flavour-tagged. Unfortunately, this approach
can largely reduce the statistical power of the simulated samples, which are used for mod-
eling the background processes in many physics analyses. The problem is exacerbated
when analysing collision events with multiple flavour-tagged jets, such as in the measure-
ment of the branching ratio of the Higgs boson decaying to pairs of bb̄ and cc̄ quarks [5,11].
For instance, for a 70% b-tagging WP, only 70% × 70% = 49% of the simulated events
containing two “true” b-jets (5) pass the pass-or-fail flavour-tagging selection. Therefore,
the statistical power of the sample for these events is halved. Figure 5(a) shows that
the associated light-flavour jet rejection rate of the DL1r algorithm is of ∼ 103, when
applied on tt̄ jets with transverse momentum pT between 20 and 250GeV. Thus, only
10−3% × 10−3% = 10−6% of the simulated tt̄ events with two light-flavour jets can be
used to model the scenario in which both are mistagged as b-jets.

Truth flavour-tagging is an alternative approach to pass-or-fail flavour-tagging. It
consists in weighting the events with their likelihood of having the required number of
flavour-tagged jets. Weighting a set of N events with their probabilities of passing a
selection, rather than applying the selection itself, reduces the relative statistical uncer-
tainty on the estimated number of selected events, if, as it typically happens, the variance

of the weights
√
(
∑

i≤N w2
i ) is small compared to the statistical uncertainty

√
Np on the

number Np of events selected with the pass-or-fail technique [12]:

(2)

√
Np

Np
>

√
Np

N
>

√
(
∑

i≤N w2
i )

N
if
√

Np >

√√√√√
⎛
⎝∑

i≤N

w2
i

⎞
⎠.

(5) In this context, “true” b-jets are jets that are labelled as such at the simulation level, as
determined by the presence of simulated b-hadrons associated with them.
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Fig. 7. – Efficiency map for b-jets derived from simulated tt̄ events using the DL1r flavour-tagging
algorithm at the 77% WP [4].

Therefore, if the flavour-tagging efficiency function

(3) εf =
number of jets of flavourfselected with a given WP

number of jets of flavourf

is well known, it is possible to apply the truth flavour-tagging technique to obtain a sam-
ple distributed with the same overall shapes and normalisations that would be obtained
with pass-or-fail flavour-tagging, but with a reduced relative statistical uncertainty.

6. – Flavour-tagging efficiency parametrization

The function εf is not known a priori. It depends on a set of parameters θ whose
elements are only partially known. Some refer to the jet kinematics and composition,
some to the relations between jets, and some to the general features of the collisions in
which the jets were produced. Figure 7 shows a 2D map displaying the dependence of
εb on the transverse momentum and pseudorapidity of track-jets (6) in tt̄ events for the
77% WP of the DL1r algorithm.

Truth flavour-tagging using such 2-dimensional εf (pT, η) maps was successfully
implemented in [5, 11]. Nevertheless, despite their simplicity in production (7), maps
have inherent limitations that can impede their accuracy in parametrizing εf . First of
all, scaling maps to higher dimensionalities is extremely challenging, if not impossible.
As the number n of dimensions increases, the statistics needed to populate bins in the
map scales exponentially with n. Thus, all dependences on further parameters have to
be neglected. Secondly, maps have information about features of the individual jets in
the events, but not about the relations between them, or about features of the events
themselves. For instance, light-flavour jets close to b-jets are more likely to be b-tagged,
since tracks produced by charged particles from a b-hadron decay can be wrongly
assigned to the close-by light-flavour jet [11]; and the number of tracks associated to the

(6) Track-jets are jets clustered using the variable-radius jet algorithm [13,14] with ρ = 30GeV,
Rmin = 0.02 and Rmax = 0.4 on a subset of the reconstructed tracks.
(7) Even though the optimization of the maps’ binning can require a painful trial-and-error
procedure.
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Fig. 8. – The network architecture used for truth flavour-tagging [4]. The initial jet represen-
tation is created with the jet and the event features listed in fig. 9. This representation is
then updated by a fully connected graph network resulting in a jet representation which is also
conditioned by its neighbours. A second fully connected network is then applied on each of
these updated jet representations independently to obtain the estimates of the flavour-tagging
efficiencies.

jets depends on the amount of pile-up collisions that occur in the event, influencing the
flavour-tagging efficiency.

GNNs operating on representations of the events as fully connected graphs of jets are
particularly suitable to address the high-dimensional and exquisitely relational nature of
the problem at hand.

7. – Flavour-tagging efficiency parametrization with GNNs

Figure 8 shows the scheme of a GNN-based algortihm developed to parametrize the ef-
ficiency of flavour-tagging jets in proton-proton collision events. Each event is represented
as a fully connected graph in which the jets are the nodes. Initially, jets are represented
as vectors that concatenate the track-jet and event variables listed in fig. 9. As op-
posed to GN1, also edges have an initial representation, which is the angular distance
ΔR =

√
Δη2 +Δφ2 between the jets they connect. A GNN is then used to provide

new vector representations of the jets embedding also information about the relations
between the jets and the overall structure of the graph. The resulting jet representations
are then used by a FFNN that provides a five dimensional vector for each jet, which
represents its probability of being b-tagged with each of the five WPs of DL1r which are
maintained by the flavour-tagging group of the ATLAS Collaboration (8) [4].

The training is done by targeting the DL1r bin in which the jet falls with a multi-
class cross entropy loss function. The training converges to an estimate of the true
b-tagging efficiency in each of the 5 WPs by virtue of the density ratio estimation method
introduced in [15].

7
.
1. Performance. – For use in physics analyses, the distributions obtained through

truth flavour-tagging must be consistent with those obtained through pass-or-fail flavour-
tagging within statistical uncertainty. Figure 10 shows the distribution of the large-radius

(8) The flavour-tagging WPs are defined by selecting jets above a given threshold on the dis-
criminant variable built from the continuous outputs of the flavour-tagging algorithms. In the
approach known as Pseudo Continuous B-Tagging, such discriminant variable is binned. Jets in
high bins are tagged with increasing likelihood, and are used for tighter WPs. Jets belonging
to the first bin are rejected.
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Fig. 9. – The list of variables used as features of the GNN [4].

(a) (b)

Fig. 10. – Comparison of the large-R jet mass (a) and ΔR (b) distribution obtained using direct
and truth flavour-tagging with DL1r at the 77% WP on the first two pT-leading track-jets
associated to the large-R jet in tt̄ events. The pass-or-fail flavour-tagging is represented by the
blue-filled histogram. The black error bands represent the statistical error in direct flavour-
tagging. The truth flavour-tagging obtained parametrising the efficiencies with the map method
is in grey, while the GNN method is in red. The bottom pad shows the ratio with respect to
the direct flavour-tagging distribution. Each plot refers to a different truth flavour combination
of the track-jets associated to the large-R jet and used for flavour-tagging. Figure from [4].

jet (9) mass and of the ΔR between the two pT-leading track-jets associated to the large-R
jet, comparing the results obtained using the pass-or-fail flavour-tagging method to those
obtained using maps and GNN-based truth flavour-tagging. The comparison illustrates
that the shapes and normalizations of the pass-or-fail flavour-tagging distributions are
better replicated by the GNN-based approach.

(9) Large-radius jets are reconstructed from topological clusters of energy deposited in the
calorimeters using the anti-kT algorithm [16] with radius parameter R = 1.0.
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8. – Conclusion

In the context of jet flavour-tagging in ATLAS, the capability of GNNs of modeling
data with complex relational structures allows to surpass by far the performance of
the existing algorithms. GN1, the ATLAS state-of-the-art flavour-tagging algorithm,
improves jet rejection by factors of up to 6 when applied on simulated data.

The general nature of the problem that GNNs are designed to address, namely to
capture the relations between nodes of a graph and with its overall structure, allows
to use them for a wide variety of problems. A GNN-based method for regressing the
flavour-tagging efficiency dependence on an high-dimensional set of parameters has been
presented. It improves the accuracy in modeling the background for analyses of proton-
proton collision events having multiple flavour-tagged jets.
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