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Summary.— This article is based on the talk I delivered in “Sezione 3: Astrofisica”
of the 108th National Congress of the Italian Physical Society on 12th September
2022. The session was dedicated to Gravitational Waves (GW) and Cosmology.
Since the first detection by LIGO/Virgo, GW physics has been very promising, pro-
viding a new complementary way to study and understand our Universe. In this
work I focused on the analysis and characterization of the Astrophysical Gravita-
tional Wave Background (AGWB) anisotropies, generated at the production and
during the propagation of the signal. The physics behind them shows many analo-
gies with the cosmic microwave background ones; thus I focus on the extent they can
be used to constrain cosmology, by means of the cross-correlation between the two
signals. More specifically, I aim to constrain primordial non-Gaussianity studying
its impact on the bias of astrophysical sources of GW. For the purpose, I devel-
oped a code to model the astrophysical sources and I modified the code CLASS,
implementing the AGWB anisotropies.

1. – Introduction

After almost one century since their prediction in 1916 [1, 2], the first Gravitational
Wave (GW) has been detected in September 2015 [3]. It has been one of the most
important discoveries of the last years and can be considered as a further confirmation of
General Relativity (GR). GWs are deemed to be of great importance for the information
they can provide about our Universe, both on the astrophysical (e.g., [4]) and on the
cosmological sides (e.g., [5, 6]). All the GWs measured up to now share the attribute of
being all “resolvable” signals. This means that we have been able to infer the information
about the properties of each binary system that generated them, like the masses of the
merging compact objects, the distance and location in the sky [7]. One of the challenges
of the GW search is the detection and characterization of the Stochastic Gravitational
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Wave Background (SGWB) [8-10]. This background is given by the superposition of GW
signals that are too numerous or too weak to be individually detected and it is expected
to receive a contribution from very recent sources (astrophysical sources like black hole
binaries, (BBH), or neutron star binaries, (BNS)) [11-15] and also from the very early
Universe (GWs produced during inflation, phase transitions, cosmic strings) [16-18]. This
naturally leads to distinguish two different contributions to the background: the former
sources generate the Astrophysical Gravitational Wave Background (AGWB), while the
latter lead to the Cosmological Gravitational Wave Background (CGWB). We specify
that it has not been detected yet, but the latest constraints from the LIGO-Virgo-Kagra
(LVK) Collaboration [19,20] and the detection of a possible common red noise process by
the NANOGrav Collaboration [21] are promising for an imminent detection in the very
next years. Furthermore, for such purpose, future generation interferometers are being
planned, like LISA [22], Einstein Telescope (ET) [10] and BBO [23].

In this work we focus on the AGWB. Being a stochastic background it can be char-
acterized only statistically and even though it can provide a lot of population properties
about the astrophysical sources that generated it, we study to which extent it can be used
to constrain cosmological parameters. The link between the late time evolution of our
Universe and its primordial phases resides in the anisotropies of such a background. They
can be distinguished in two types, the ones generated at the production of the signal and
those produced during its propagation towards the Earth [24-28]. These latter are due to
the inhomogeneous and anisotropic structure of our Universe and are related for example
to the presence of peculiar velocities of the sources or evolving gravitational potentials in
the graviton geodesic, whose presence is strictly linked to the fluctuations of primordial
fields. On the other hand the former are due to the intrinsic anisotropic distribution of
GW sources in the sky and will be called in the following “density anisotropies”. These
ones are at the center of this work since, as we will show in the following, they present a
strong dependence on the presence of primordial non-Gaussianity (nG), the observable
we are focusing on in our analysis.

Understanding the origin of our Universe —i.e., its primordial phase called infla-
tion [29-31]— is one of the most important aspects of current cosmological searches.
A way to distinguish among the huge number of models that have been proposed is the
amount of primordial nG [32, 33]. In the standard scenario of inflation, the amount of
nG is expected to be very small; on the other hand non-standard scenarios allow for a
large level of nG (see, e.g., [34]). It clearly follows, that constraining nG would allow us
to rule out some of these models. A powerful way to detect primordial nG is the study
of the abundance and clustering of rare events: structures in our Universe are generated
by the large fluctuations of the primordial density field, expected to lie in the tails of
its probability distribution. These tails are affected by the presence of nG and thus the
abundance of very rare events is very sensitive to changes in the shape of the distribution,
like the ones generated by nG. Tipically, the way adopted to study the distribution of the
underlying dark matter is the analysis of the structures that we can directly observe from
Earth, the tracers (e.g., different types galaxies, GW sources, etc.). Their distribution
is related to the underlying matter distribution through the bias and so can be used to
infer this latter’s properties.

In this work we focus on the effects of local primordial nG, that result in the presence of
an additional scale-dependent correction to the tracers bias, proportional to fNL, [35-37].
The statistical tool we adopt in our analysis is the cross-correlation between the AGWB
and the Cosmic Microwave Background (CMB). The idea behind this method is related
to the presence of some analogies between the anisotropies of the two signals. In our
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analysis the cross-correlation arises mainly in the AGWB density anisotropies and the
CMB’s Integrated Sachs-Wolfe (ISW) effect, as will be explained in the following. We
focus on the contribution to the AGWB coming from Black Hole Binaries (BBH) since
they are expected to dominate the signal. For such a purpose, we develop a python code
to model all the astrophysical dependences of the sources e.g., mass distribution, binary
merger rate following the latest constraints coming from the LVK Collaboration [38].
Furthermore we modify the CLASS code [39], including all the anisotropies of the AGWB,
the effect of nG on the bias and the astrophysical dependences.

In sect. 2 we discuss the AGWB and its anisotropies, in sect. 3 we briefly discuss
about the CMB, while in sect. 4 we discuss quantitatively about the GW bias and the
effects of nG. Finally in sects. 5 and 6 we will report our results and conclusions.

2. – AGWB characterization

The way to characterize the SGWB is through the GW energy density per logarithmic
frequency, defined as

(1) ΩGW(fo, n̂) =
fo
ρc

dρGW(fo, n̂)

dfo
.

We indicated with fo the observed frequency and with ρGW and ρc, respectively, the GW
energy density and the critical energy density. Note that we also included a dependence
on the direction to account also for the anisotropic contribution to ΩGW. Actually the
isotropic (also called monopole) and anisotropic contributions can be separated by writing
the normalized GW energy density as

(2)
ΩGW(fo, n̂) = ΩGW(fo) + ΔΩGW(fo, n̂)

= ΩGW (fo)(1 + ΔGW(fo, n̂)) ,

where in the last line we have defined the anisotropic contribution normalized with re-
spect to the monopole, ΔGW(fo, n̂). Another differentiation that can be applied to the
normalized energy density is related to sources that contribute to it so that one could
write

(3) ΩGW(fo, n̂) =
∑
i

Ω
[i]
GW(fo, n̂) ,

with the index “i” that runs over all the GW sources. In this work we focused only on
the contribution coming from black hole binaries, expected to be the dominant one in
the astrophysical background.

2
.
1. Anisotropic contributions . – The full calculation of the anisotropies characterizing

the AGWB was firstly performed by [28,40,41] and by [27] starting from a very general
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gauge (see also [42]). We report here the full expression in the Poisson gauge [27]

Δ
[i]
GW(fo, n̂) =

fo
ρc

∫
dz

H(z)W [i](z)

×
{
δ
[i]
GW

+
(
b
[i]
evo − 2− H′

H2

)
n̂ · v − 1

H∂‖(n̂ · v)− (b
[i]
evo − 3)HV

+
(
3− b

[i]
evo +

H′

H2

)
Ψ+ 1

HΦ′ +
(
2− b

[i]
evo +

H′

H

) ∫ χ(z)

0
dχ(Ψ′ +Φ′)

+
(
b
[i]
evo − 2− H′

H2

)(
Ψo −H0

∫ η0

0
dη Ψ(η)

1+z(η)

∣∣∣∣
o

− (n̂) · v)o
)}

.

On the first line in the brace we find the density anisotropies related to the distribution of
the GW. Note that here the density is expressed in the synchronous gauge, so it results
gauge invariant. It can be related to the underlying matter distribution through the

bias as δ
[i]
GW = b[i]δm [43]. On the second line we find the Kaiser and Doppler terms,

related to the peculiar velocity of sources while on the third line we find the gravitational
anisotropies due to the presence of gravitational potentials, here indicated with the greek
letters Ψ and Φ. The last line reports the terms evaluated at the observer, that contribute
only to the monopole and to the dipole, so in this analysis have been neglected. Finally
H(z) is the Hubble parameter and W [i](z) the astrophysical kernel, that we will describe
in the next subsection.

2
.
2. Astrophysical Kernel . – The astrophysical kernel is a function that encloses all

the astrophysical dependences of the sources considered and can be written as

(4) W [i](z) ≡ fo
ρc

4π

Ω
[i]

AGWB

w(z, θ)N [i](z, fe, θ)

(1 + z)
.

We model the BBH number density N [i] following the latest results from the LVK Col-
laboration(1). Thus we choose the power law plus peak distribution for the masses of the
progenitors in the range 4.59–86.22 M� and we account for all the sources that merged
in the redshift range 0–8 [38]. Furthermore we consider only the contribution coming
from unresolved sources by means of a weight function w(z, θ), that accounts only for
signals whose SNR does not overcome a certain threshold that we fix to 8 [44]. Finally
we model the BBH merger rate as follows. We start from the star formation rate follow-
ing [45]. Then, since not all the stars end up forming a binary and not all the binaries
have merged yet, we multiply the rate by a constant A1 that is then fixed by matching
it to the BBH merger rate today inferred by LVK [38]. We account for the time delay by
weighting the binary merger rate with a time delay probability distribution p(td) ∝ t−1

d .
We implemented all these astrophysical dependencies in a python code that then we used
in combination with the Boltzmann code CLASS to obtain the cross-correlation signal.

(1) Note that in eq. (4) fe is the frequency at the emission of the signal, while θ represents the
astrophysical parameters we consider.
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2
.
3. Angular decomposition. – We conclude the AGWB analysis by projecting the

anisotropies on the sphere using the spherical harmonics. It leads to(2)

(5) ΔGW(fo, n̂) =
∑
�m

aAGWB
�m (fo)Y�m(n̂) .

Here the aAGWB
�m (fo)’s are the coefficients of the expansion and contain all the informa-

tion about the anisotropies. Actually they are proportional to the primordial curvature
perturbation and so they are stochastic variables. Thus we characterize them using the
angular 2-point correlation function so that one can write

(6)
〈
aAGWB
�m

∗
aAGWB
�′m′

〉
= δ��′δmm′CAGWB

� .

In the last expression the CAGWB
� indicates the auto-correlation angular power spectrum.

3. – CMB

The other observable we consider in our work in order to build the cross-correlation
is the CMB. For the purpose of this article we will just report a brief introduction
mainly focusing on its anisotropies (e.g., see [46]). The CMB is made of photons that
decoupled from the rest of the Universe almost at redshift z ∼ 1100 and then propagated
freely, reaching us after being redshifted due to the expansion of the Universe itself.
As anticipated before, also this signal presents some anisotropies imprinted during the
propagation of the signal: the Sachs-Wolfe (SW) effect, the Doppler and the ISW. The
first one is related to the gravitational redshift of the photons while coming out of the
potential wells at the moment of the decoupling. The second effect is mainly due to
relative motion of the photons fluid with respect to the observer. Finally the ISW is still
a gravitational effect, but with a different explanation. It is related to the evolution in
time of the gravitational potentials during the various epochs (early matter domination
and dark energy domination) that affects the propagation of the CMB photons. Thus
one can distinguish two different contributions to this effect, an early one due to the fact
that at the decoupling the Universe was not in full matter domination (during which the
potentials do not evolve and so this effect is vanishing) and a late one, effective since
the Universe entered in the dark energy epoch. Starting from the photons Boltzmann
equation it is possible to obtain an expression for such anisotropic contributions that can
be decomposed on the sphere, yielding

(7)
〈
aCMB
�m

∗
aCMB
�′m′

〉
= δ��′δmm′CCMB

� .

4. – Primordial nG and bias

In this section we will finally report the effects of primordial nG on the bias in a
more quantitative fashion. Many models of nG have been proposed and can be grouped
depending on the shape of the bi-spectrum they generate (see e.g., [34,47] and references

(2) We specify that in eq. (5) we change the label of the coefficients a�m from GW to AGWB
since we focus in this work only on the AGWB contribution, even though the expression is
completely general.
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therein). Among these we consider the effects of the local-shape on the bias. In this
case the Bardeen nG potential Φ can be written using an auxiliary Gaussian potential φ
as [48,49]

(8) Φ(x) = φ(x) + fNL

(
φ2(x)− 〈φ2(x)〉

)
.

Here we introduced the fNL parameter that is used to quantify the amount of nG.
The authors of [35-37] showed that starting from this parametrization it is possible to
obtain a scale-dependent correction to the bias

(9) Δb(z, k) = 3fNL(b− 1)δc
Ωm

T (k)D(z)k2

(
H0

c

)2

.

In the last expression T (k) is the matter transfer function, D(z) the growth function,
H0 the Hubble parameter today and c the speed of light. Here δc is a threshold coming
from spherical collapse models and b is the bias defined in sect. 2

.
1. We underline the

dependence of such correction on the factor fNL/k
2. The proportionality to fNL suggests

the dependence of this correction, from now on called “nG correction”, on the amount of
nG predicted by a particular model, while the dependence on the inverse square of the
wave-number k indicates that the correction will be more relevant on the largest scales,
where k is very small.

5. – Results

After this introduction we finally report the cross-correlation power-spectrum we ob-
tained. We cross-correlated the AGWB anisotropies with the CMB ones, including the
effects of local primordial nG on the bias of GW sources. We modified the public code
CLASS [39] to obtain the cross-correlation power spectrum, including all the AGWB
anisotropic terms and the nG contribution. We also included the effects due to the as-
trophysical kernel obtained developing an external python module and that behaves as a
window function in redshift, as one can see from eqs. (4) and (10). We report the results

Fig. 1. – The plot shows the cross-correlation angular power spectrum of the AGWB with the
CMB. We report the total cross-correlation signal (black line) and the cross-correlation between
the density anisotropies and the late-ISW (blue line). This latter, as expected, dominates the
signal, almost coinciding on all scales with the total signal.
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Fig. 2. – The plot shows the percentage difference of the angular power spectrum for the cross-
correlation between the AGWB and the CMB of the nG cases with respect to the Gaussian
one for different values of fNL. We show that the nG contribution leads to a suppression (or
enhancement) up to the ∼30% on large scales. The exact behaviour of the curves is actually
dependent on the clustering properties of the GW sources, i.e., on the parameters b and p
considered.

obtained in fig. 1. As the plot shows, the dominant contribution comes from the cross-
correlation of the CMB (mainly in the ISW effect) with the density anisotropies. Actually
this behaviour was expected and can be explained as follows. The ISW effect, if we now
consider its late contribution, is mainly due to the decay of the gravitational potentials on
large scales that happens very recently in time. On the other hand, matter in the Universe
traces these underlying gravitational potentials and the matter distribution is traced by
the GW sources we consider. Therefore a non-zero spatial correlation between the CMB
and the AGWB is expected and the ISW-density anisotropies term has to dominate it.
Furthermore the behaviour of the whole signal can be explained by considering mainly
just this contribution: the late-ISW shows a decreasing behaviour as the scale decreases
(
 increases) while the density anisotropies show a growing behaviour as one moves to
small scales. It is reasonable that the cross-correlation among the two has to grow on
large scales, reach a peak and then decrease when the ISW vanishing behaviour starts to
dominate. We now report as an example the explicit expression for the C� related to the
dominant contribution accounting also for the nG contribution to the bias. One obtains

CISWxδm
� =

2

π

∑
[i]

∫
dkk2Pζ(k)

∫ η0

0

dη [T ′
Ψ(η, k) + T ′

Φ(η, k)] e
−τ j�(k(η0 − η))

×
∫ η0

0

dηW [i](η)

[
b[i] + 3fNL(b

[i] − 1)δc
Ωm

T (k)D(η)k2

(
H0

c

)2
]

× j�(k(η0 − η))Tδ(η, k).

In this equation, Tφ, Tψ and Tδ are transfer functions, linking the gravitational potentials
Φ and Ψ and the density contrast δ to the primordial curvature perturbation ζ, whose
power spectrum (i.e., the two-point correlation function in Fouries space) is Pζ(k). The
j�’s are the spherical Bessel functions and η is the conformal time. The effects of nG on
the cross-correlation as also shown in fig. 2 are more relevant on large scales and result
in a suppression or enhancement of the spectrum on those scales. More precisely fig. 2
reports the percentage difference of the nG spectrum with respect to the Gaussian one.
We consider different amounts of nG in the range −7 ≤ fNL ≤ 7. The amplitude of
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the spectrum varies up to ∼ 30% on large scales and this could make the difference
in the detection of the signal. We also underline that the current, but also future
planned detectors are expected to be more sensitive to the largest scales, so it is clear
the importance of understanding the behaviour of the spectrum on the smallest 
s.
It is dutiful also to underline that the symmetry in the enhancements/suppressions
of the spectrum is due to the linear dependence on fNL of the cross-correlation, as
shown in eq. (10). The same behavior, for example, is not present when considering
the auto-correlation signal in which the dependence on fNL presents both a linear and
a quadratic term, leading to asymmetric effects on the angular power spectrum.

6. – Conclusion

We considered the cross-correlation of the AGWB with the CMB considering the
effects of primordial nG on the bias. We used the well-studied characterization of the
CMB anistropies and the characterization of the AGWB ones following [46] and [27], re-
spectively. Moreover, we accounted for the effects of primordial nG on the bias as firstly
shown by [35-37]. In this work we explored the possibility of using GW sources contribut-
ing to the AGWB as tracers of the underlying dark matter distribution and the extent
this signal can be used to constrain nG. We introduced the theoretical formalism of the
CMB and AGWB anisotropies and then we discussed the cross-correlation signal. This
latter is expected to be mainly given by the correlation between the density anisotropies
and the (late)-ISW effect, both being very recent and important on large scales. We
confirmed such a behaviour by plotting the expected angular power spectrum obtained
modifying the publicly available code CLASS. We added the effects of local primordial
nG on the bias and the AGWB anisotropies. Furthermore, we developed a python code
to model the population of BBH considered, accounting for the latest results coming
form LVK collaboration. We verified that the inclusion of primordial nG would lead an
enhancement (or a suppression) of the power spectrum up to ∼ 30% for the values of
fNL we considered with respect to the absence of such corrections on large scales.
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