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Summary. — In this work, image analysis techniques used in astrophysics to detect
low-contrast signals have been adapted in the processing of Computed Tomography
(CT) images, combining Centroidal Voronoi Tessellation (CVT) and machine learn-
ing techniques. Several CT acquisitions were performed using a phantom containing
cylindrical inserts of different diameters producing objects with different contrasts
with respect to the background. The images of the phantom, tilted by a known an-
gle with respect to the tomograph axis (to mimic the casual orientation of a clinical
lesion), were acquired at various radiation doses (CTDIvol) and at different slice’s
thicknesses. The success in detecting the signal in the single image (slice) was always
greater than 60%. The axis of each insert has always been correctly identified. A
super-resolution 2D image was then generated by projecting the individual slices of
the scan along this axis, thus increasing the CNR of the object scanned as a whole.
CVT holds great promise for future use in medical imaging, for the identification of
low-contrast lesions in homogeneous organs, such as the liver.

1. – Introduction

The detection of low-contrast lesions in computed tomography (CT) images is a crit-
ical task in the diagnosis and management of many diseases, including cancer, but it
remains a major challenge due to limitations of imaging technology and variability of
lesion appearance [1]. A variety of image processing techniques have been developed to
improve the detection of such lesions, but they often suffer from high false positive rates
and poor sensitivity, particularly for small or subtle lesions [1-3].

In this article, we present a novel approach for the detection of low-contrast lesions
in CT images using centroidal Voronoi tessellation (CVT). CVT is a computational
geometry technique that is employed in digital images analysis to cluster regions of similar
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intensity. Numerous domains and applications, including astrophysical image processing,
data analysis, chemical processes, cellular biology, and statistics, have adopted the CVT
model [4-9]. However, according to our knowledge, a CVT-based approach had never
been applied to CT images to perform lesion detection.

We exploit CVT for the detection of low-contrast lesions of small or mild sizes. In
addition, we developed an algorithm that, following the clustering CVT process, exploits
the 3D information of the CT images to create a super-resolution image with enhanced
contrast lesions.

The CVT-based algorithm was then validated on a series of CT images acquired
on a specifically designed phantom containing cylindrical inserts, intended to simulate
low-contrast lesions in human tissue. The phantom was scanned at different Volumetric
Computed Tomography Dose Index (CTDIvol) to replicate various levels of noise and
image quality [10]. Furthermore the phantom images were arranged at a tilted angle
with respect to the CT acquisition axis, to simulate a spatial orientation of the lesion in a
hypothetical patient’s abdomen. The capability of the inserts detection algorithm and of
their axes of propagation through the third dimension resulted to be so remarkably high
that we decided to ask the authorization from the ethics committee for the application
of our procedure on actual clinical images.

2. – Materials and methods

2
.
1. Phantom and CT images . – The image dataset used to test and optimize the

proposed algorithm has been obtained by a specifically designed PolyMethyl MethAcry-
late phantom [11], containing 5 cylindrical inserts of different diameters (5mm × 2,
6mm × 2, 7mm); the inserts were filled with iodine contrast media at different con-
centration in order to obtain different contrast values (8, 25 and 35 Hounsfield Unit
(HU) (1)) with respect to PMMA background (125HU at 120 kVp). Acquisitions were
performed at two different CTDIvol settings (3.54 and 7.05mGy), having selected the
standard oncological protocol for abdomen (120 kVp, AEC, helical mode, pitch = 1, col-
limator aperture = 38.4mm, slice thickness = 0.6 and 1mm). CT images reconstruction
FoV (RFoV) was chosen equal to 15 cm2 (matrix of 512 × 512 pixels) in order to generate
images with the highest spatial resolution containing all the five inserts. The phantom
was positioned with its axis perpendicular to the XY plane rotated about 16 degrees
with respect to the CT image acquisition Z-axis detail. Figure 1 shows a picture of the
phantom and of a reconstructed CT slice containing almost invisible low-contrast objects.

2
.
2. The algorithm. – The first step involves the generation of 26000 points or seeds,

corresponding to about 1/10 of the total number of pixels; the coordinates (x,y) of
each seed are distributed within the image in a quasi-random way. This is achieved by
using a Monte Carlo simulation where the most favored coordinates are picked within
image areas characterized by elevated pixel intensity values (a possible signal area). The
software used for the Monte Carlo simulation and the corresponding density probability
definition were developed in-house. The following step consists in running 500000 total
iterations of the MacQueen CVT algorithm [6, 12], which iteratively updates the seeds
position, only one per iteration, by moving each seed halfway towards its closest seed.

(1) HU is the unit used in CT to measure the density of the various tissues: 1 HU is 1/1000
the density of water.



LOW-CONTRAST DETECTION AND SUPER-RESOLUTION IN CT IMAGES ETC. 3

Fig. 1. – (A) Picture of the phantom; (B) a phantom CT slice on which the algorithm runs.

Therefore the position of each seed is updated about 20 times. The accumulation of
the seeds in regions of higher signal corresponds to the minimum of a cost function that
locally measures the sum of squared distances between each seed and its nearest one.
Since the constraint for the CVT algorithm is that each seed must be located in the
mass centroid of its Voronoi tessel [4], it follows that the accumulation generates smaller
Voronoi tessels in the regions with higher signal intensity. A representation of the Voronoi
tessellation obtained after MacQueen’s algorithm is shown in fig. 2.

The following step involves the use of an unsupervised clustering algorithm, DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [13], to identify clusters.
DBSCAN is a density-based clustering algorithm for detecting clusters of arbitrary shape.
It works by grouping seeds that are close together while ignoring points that are far away
each other or isolated. It requires two parameters, the searching radius (eps) and the
minimum number of points (MinPts), to control the density of the clusters: if a point has

Fig. 2. – Voronoi tessellation after the application of the MacQueen algorithm. It is noticeable
that the tessels areas are smaller in the high intenisty regions and larger outside.
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Fig. 3. – (A) Clusters that have been selected by DBSCAN; (B) clusters selected by 2 sigma
analysis; (C) plane logical AND on a 2D slice; (D) logical AND filtered with the superimposition
over the third dimension.

at least MinPts (we opted to use the lowest seed count depicted in the insert as the lower
threshold, assuming that they were randomly generated) neighbors within a distance of
eps, then it is considered as a core point and a new cluster is formed. In our algorith eps
was chosen equal to the radius of the smallest insert, while as MinPts we have chosen the
average number of pixels that are present in the low-constrast object area. DBSCAN is
performed after the removal of the Voronoi seeds associated with Voronoi tessels areas
larger than 10 pixels: this is the average size of the initially randomly generated tessels. A
first binary mask is generated, by the output of DBSCAN, to visually identify the clusters.
A second, indipendent, binary mask is generated by agglomerating the neighboring pixels
with signal values above average value of the image after a Gaussian smoothing plus
2σ. The application of this smoothing technique enables improved homogeneity and
spatial coherence of signal regions, which may otherwise be influenced by incidental noise
fluctuations. A logical AND is then performed between the two masks. This intersection
allows to remove the possible noise’s clusters erroneously selected from the two previous
single steps,thus making the identification of signal clusters more robust.

The fourth step is to check if the identified clusters are present in the adjacent slices.
If this condition is not satisfied, the cluster is attributable to noise perturbation and
discarded. Figure 3 schematizes the output matrices of the procedure described above,
step by step.

Once the remaining clusters are labeled as belonging to a specific insert, a linear
regression on their centers of mass allows to identify the propagation axis of the tridi-
mensional inserts.

The knowledge of the propagation axis allows the proper displacement of the slices
so that the center of mass of a cluster within a slice is aligned in all the other slices.
At this point, a super-resolution image can be generated, that is an image obtained
by the summation of all the aligned slices. Our study made the assumption that the
axis was fixed in space; however, in a clinical context, this assumption would not hold,
and displacements should be considered independently for each slice. The correct slices
displacement allows to obtain, in the final summed image, a substantial increase of
the contrast-noise ratio (CNR). The final result is a much sharper image (actually, a
super-resolution image) allowing a much easier detection of very low contrast signals.
The super-resolution images obtained after proper slices alignment and summation were
compared with those generated by summation along the Z-axis of the original slices. An
example can be seen in fig. 4.

A block diagram of the whole process is shown in fig. 5.
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Fig. 4. – A comparison of a super-resolution image obtained with the simple sum over Z-axis
(on the left) and the one obtained after proper translation of the CT slices (on the right).

The results of the algorithm were obtained in a computational time of around 5–8
minutes on an ordinary laptop —MSI Prestige 14 Evo with 3.00GHz Intel Core i7-1185g7.
The full code was developed on Python 3.9.6.

Fig. 5. – Block diagram of the algorithm described in the section “The algorithm”.
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Table I. – Results of the detection rate: the percentages refers to the average of all five inserts
in the 2D slices.

Slice thickness CTDI (mGy) Average detection rate

0.6mm 3.54 60%

0.6mm 7.05 82%

1mm 3.54 81%

1mm 7.05 93%

3. – Results

The algorithm based on Centroidal Voronoi Tessellation is able to correctly identify
the clusters belonging to low-contrast regions, obtaining performances that do not suf-
fer from certain deficiencies that may occur to a human observer, such as: tiredness,
distraction or non-optimal reporting conditions.

The detection rate of the inserts in the single CT slices is measured as the percentage
of the number of inserts detected in all the acquired slices. The results show that the
algorithm was able to classify the clusters as being part of the various inserts at least
in 60% of the cases: this low detection rate is relative to the insert with only 8 HU
of contrast difference compared to PMMA at the lowest CTDIvol, and 0.6mm of slice
thickness, outermost in clinical practice. On the contrary for the contrast of 25HU and
35HU the detection rate is very good, up to a detection rate of 91% for the slice thickness
of 1mm and a higher CTDIvol (table I).

A qualitative analysis of super-resolution images shows how the sum of the slices
along the Z-axis produces pronounced ovoid-shaped inserts when compared to the more
circular ones obtained by summing along the actual axis identified by our algorithm
which therefore allows to reproduce a shape more similar to the real one. The second
emergent effect in the images obtained by the summation along the propagation axis is the
sharpening of the signal; de facto, the peripheral regions do not exhibit an attenuated

Table II. – Increase of the CNR in the super-resolution image obtained by summing along the
actual axis of the insert instead of summing along the z axis.

Slice thickness CTDI (mGy) CNR

0.6mm 3.54 +20%

0.6mm 7.05 +25%

1mm 3.54 +30%

1mm 7.05 +32%
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Table III. – Results of the shift calculated by the algorithm with respect to the real shift.

Slice thickness CTDI (mGy) Real displacement Calculated displacement

0.6mm 3.54 X = 0.172mm; X = 0.172± 0.006mm;
Y = 0.000mm; Y = 0.00± 0.01mm

0.6mm 7.05 X = 0.172mm; X = 0.171± 0.008mm;
Y = 0.000mm; Y = 0.004± 0.0041mm

1mm 3.54 X = 0.287mm; X = 0.301± 0.008mm;
Y = 0.000mm; Y = 0.01± 0.01mm

1mm 7.05 X = 0.287mm; X = 0.289± 0.01mm;
Y = 0.000mm; Y = 0.01± 0.03mm

Fig. 6. – (A) Original CT 2D slice; (B) cluster selected for that slice; (C) super-resolution image
obtained for that acquisition.

signal intensity, as opposed to the sum along the z-axis, where the inclusion of noisy
areas can impact the signal strength. This behavior was quantified through the analysis
of the Contrast-to-Noise Ratio (CNR), calculated on a crown-shaped ROI surrounding
the insert with an area equal to the insert itself. CNR shows an increase from a minimum
of 20% up to a maximum of 32%, as reported in table II.

These results in super-resolution images can be obtained only if the propagation axis is
correctly identified, in fact a summation along an incorrect axis would lead to sub-optimal
results, if not even worse than the reconstruction along the z-axis. The displacement of
each center of mass with respect to the previous one was correctly identified with an
error of a few percent as reported in table III. The results from both the single-slice
cluster identification and the super-resolution are displayed in fig. 6.

4. – Conclusions

In this work a newly developed algorithm, based on the Centroidal Voronoi Tessel-
lation, was developed and tested to perform detection of low-contrast objects in CT
images obtained by acquiring a specifically designed PMMA phantom under different
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CTDIvol settings and reconstrion slice thicknesses. The results showed a high detection
rate, meaning that it is possible identify lesions of clinical interest even at very low con-
trast. The study also demonstrates the effectiveness of a novel super-resolution image
production obtained by means of a targeted summation of the CT slices to produce much
sharper definition of the low-contrast inserts.

The algorithm showed its limitations with the insert used as a stress test, that is (con-
trast of 8HU, 5mm of diameter, 0.6mm of slice thickness and 3.54mGy of CTDIvol) it
failed to identify this signal source at all. When considering slice thickness and CTDIvol
values that are most representative of clinical practice, the same insert demonstrated the
potential for identifying very low-contrast lesions using the proposed technique.

In summary, the results of this study demonstrated the potentiality of our proce-
dure for further developments and applications to detect clinical lesions in homogenous
anatomic districts, such as the liver. We are so encouraged by the results obtained that
we plan to ask the authorization of the ethics committee for the application of our pro-
cedure to clinical tasks with the aim of investigating the possibility of an early diagnosis
of some liver diseases such as the hepatocellular carcinoma.We selected this particular
pathology because it represents the described scenario of low-contrast lesions within a
homogenous anatomical region.
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