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Summary. — In medical physics and radiobiology, the most common method to
probe the efficacy of radiation therapy approaches in vitro is the cell survival trial.
Recently, the traditional procedure for external beams has been extended by some
groups to targeted radionuclides. In parallel, the bioengineering state of the art
allows for the use of 3D tissue-mimicking scaffolds to obtain realistic cell cultures in
dynamic conditions. The aim of this study is to implement a mathematical model
for the assessment of β-emitting radiopharmaceuticals, considering their molecular
kinetics in vitro and how it affects the radiation delivery to cells. The molecular
transitions will be assumed to fulfill the definition of Markov processes, while the cell
survival will depend on the DNA damage, in competition with a logistic growth. The
solutions of the resulting differential system will be evaluated by means of numerical
examples. This work belongs to the framework of the ISOLPHARM project, headed
by INFN-LNL, which has the aim of developing innovative radiopharmaceuticals
exploiting the Isotope Separation On-Line (ISOL) at the SPES facility.

1. – Introduction

The mathematical modelling of the cellular response to ionizing radiation, namely
the theoretical branch of radiobiology, is an enticing challenge that the biophysics and
medical physics communities have been facing since the 1920s, even before the discovery
of the DNA itself. The most common model nowadays is the Linear Quadratic (LQ),
born in the late 1960s as an empirical model but then partially justified by theoretical

(∗) E-mail: alberto.arzenton@lnl.infn.it

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 ALBERTO ARZENTON on behalf of the ISOLPHARM COLLABORATION

arguments. The model expresses the surviving fraction S of a cell population as a function
of the absorbed dose D,

(1) S(D) = exp
(
− aD − bD2

)
,

where the parameters a and b reflect the cell death caused by single and multiple hits. It
is widely used in conventional radiotherapy planning, even though some weaknesses can
be found in the low-dose regime (D < 1Gy), where a region of hyper-radiosensitivity
appears, followed by a subsequent window of increased radioresistance. [1-3]

In more recent times, the opportunity to exploit advanced Monte Carlo software, like
Geant4-DNA, PHITS and PARTRAC, has allowed for the development of mechanistic
models directly investigating the DNA strand breaks at the molecular level, reproduc-
ing the geometry of the cell nucleus; such models are able to consider both the direct
radiation damage on the DNA and the indirect damage acting through the formation of
free radicals and reactive oxygen species in the cell environment [4-11]. A state-of-the-
art experimental feedback to this kind of models is given by the γ-H2AX assay, which
enables the visualization of the DNA Double Strand Break (DSB) sites, the so-called
foci, thanks to a specific fluorescent ligand; often, the DNA damage is computationally
modeled with the definition of Complex Lesion (CL), occurring when a critical number of
DSBs is reached within a critical distance [12-14]. Besides the computational approaches,
advanced theoretical models managed to describe analytically the DNA damage probabil-
ity, also considering that a single cell can undergo multiple CLs, and the repair pathways,
finding good agreement with experimental data [15,16].

Up to now, preclinical radiobiology has been mostly tailored in order to measure
and assess the effects of external beams on cells and, as a consequence, radiation bio-
physics modeling has been moving in the same direction. However, some non-negligible
differences emerge when switching to targeted radioisotopes.

1) The dose-rate per cell depends on the number of cell receptors that can bind the
radioactive molecules, hence on the total number of living cells in the culture.

2) The ionizing radiation is not administered in uniform cycles, but it decays expo-
nentially in time.

3) The exposure time is longer and, in general, comparable to the characteristic time
of the biological processes affecting the cell population, namely DNA repair, cell
growth and cell death.

It is clear that the amount of the cell population must be taken into account for the whole
exposure time; for this reason, rather than expressing the cell survival as a function of the
absorbed dose, it appears more interesting to consider the cell survival and the dose-rate
per cell as functions of time, for a given administered activity [17, 18]. Recently, some
groups have tried to develop new radiobiological protocols optimized for the in vitro
testing of radiopharmaceuticals and, contextually, cell population models exploiting the
definition of Markov processes for the description of the pharmacokinetic, physical and
biological mechanisms began to be employed in this field [19-22]. Moreover, cellular
dosimetry calculations have been related to several experiments in order to match the
dose absorbed by the cell nucleus to the surviving fraction, usually applying the procedure
suggested by the American committee on the Medical Internal Radiation Dose (MIRD),
which is based on the S-values formalism [23-25].
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Finally, from a purely biological point of view, the new frontiers in the experimental
practice are characterized by more realistic 3D cell cultures obtainable thanks to inno-
vative scaffolds made of tissue-mimicking materials, such as the hydrogel-based bioinks
coming from the bioengineering avant-garde. Cells can be fed and grown to form bodily
organoids or cancer spheroids, which permit to perform more advanced research in vitro
and partially reduce the in vivo trials. 3D cultures can also be dynamic, which means
that the cells can be placed in a bioreactor and fed continuously, mimicking the provision
of nutrients managed by the blood circulation. [26, 27]

This work was conceived in the context of the ISOLPHARM project, which is headed
by the Legnaro National Laboratories (LNL) of the Italian National Institute for Nuclear
Physics (INFN); its purpose is the development of innovative radiopharmaceuticals ex-
ploiting the nuclides produced by the Isotope Separation On-Line (ISOL) technique at the
SPES facility, currently under construction. ISOLPHARM relies on a strong national col-
laboration involving also the INFN sections of Padova, Pavia, Trento, Bologna and Pisa
(Siena division), as well as the Southern National Laboratories (LNS), and the universi-
ties of Padova, Pavia, Trento, Bologna, Siena, Catania and Brescia. A similar network
has favoured the interaction between researchers with different expertise, from physics
and chemistry to biology and pharmacology, in order to carry out interdisciplinary activ-
ities in the INFN experiments ISOLPHARM Ag (2018–2019) and ISOLPHARM EIRA
(2020–2022) [28-33]. The present work is meant to be a pilot study for the third ex-
periment promoted by the ISOLPHARM collaboration, ADMIRAL (2023–2025), whose
purpose is to evaluate the therapeutic and diagnostic power of the β-emitter 111Ag; in
particular, a radiobiological experimental campaign will test the in vitro cellular response
to 111Ag-labeled drugs in conventional 2D and innovative 3D cell cultures. A theoreti-
cal support to those activities will be provided by computational simulations of cellular
dosimetry and DNA damage; however, for the aforementioned reasons, the output of
these simulations will need to be inserted in a proper cell population model before be-
ing compared to the cell survival data. This is indeed the purpose of the present work,
which will try to implement a cell population model with a cumulative DNA damage
mechanism and with the possibility to consider non-uniform activity distributions, like
the ones that can be expected in 3D scaffolds.

2. – Model development

To build the model, several aspects must be taken into account. The first brick
concerns the molecular kinetics, since knowing how much radiopharmaceutical is free or
bound to the target receptors at time t is fundamental to proceed. Then, the result has
to be matched to the equations regulating the cell population, which must also include
a parameterization of the cell damage. Finally, a strategy to extend the resulting model
also to the condition of non-uniform activity delivery in the culture will be studied.

In the mathematical modeling of biological and biophysical systems, it is common to
employ the definition of Markov processes for any kind of transitions whose probability
to happen in a given time interval does not depend on the history of the initial state.
Following this formalism, a generic state i will undergo a transition towards another state
j with a rate p, yielding, in a time window dt, a transition probability pdt (p has to be
constant at least in dt). Considering a function f(t) expressing the number of elements
of a system in the state i, its variation df(t) will be

(2) df(t) = −pf(t)dt,
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which, in the dt → 0 limit, gives ḟ(t) = −pf(t). It is important to state, especially
for computational reasons, that dt must be short enough to consider it improbable for a
single element to undergo more than one transition in dt. The molecular kinetics and cell
population equations will be built making use of these assumptions for several processes.

2
.
1. Molecular kinetics . – The first feature to analyze is the radiopharmaceutical

uptake, namely its binding and unbinding processes to the cell receptors. Let us consider
a drug that simply binds to a receptor on the cell membrane, without being internalized.
This is a suitable condition for β-emitters, since their radiation range is sufficiently long
to reach the cell nucleus, where the DNA is contained, while α and Auger emitters may
not work properly. In this situation, the unbinding process will be simply regulated by
a transition rate β, whereas the binding will be proportional to the number of available
receptors with a constant α. In this way, the equations will include the receptor saturation
effect: as a matter of fact, when a big fraction of the receptors has already been employed,
it is more difficult for a free drug molecule to find an available site. Finally, in an in vivo
system, a third rate γ would represent the biological elimination of the free drug by the
excretory apparatus. Calling x(t) and y(t) the number of unbound and bound molecules,
Nr the number of receptors per cell and z(t) the number of cells,

(3)

{
ẋ(t) = −α

(
Nrz(t)− y(t)

)
x(t) + βy(t)− γx(t),

ẏ(t) = α
(
Nrz(t)− y(t)

)
x(t)− βy(t),

where Nrz(t) − y(t) clearly represents the number of available receptors; on the other
hand, if the drug is internalized, the receptors are not occupied and the binding process
could be described by a constant rate, just like the unbinding. However, this work focuses
on in vitro practice, where γ = 0 and y(t) = xin −x(t) with xin ≡ x(0) (t = 0 is assumed
as the injection time); hence, the system degenerates to a single equation,

(4) ẋ(t) = −α
(
Nrz(t)− xin + x(t)

)
x(t) + β

(
xin − x(t)

)
.

Numerical examples of eqs. (3) and (4) are shown in fig. 1, considering a fixed value for
z(t). It is clear that in a similar context x(t) has an asymptotic equilibrium for t → +∞,
which can be calculated setting ẋ(t) = 0 and considering only the positive solution,

(5) xeq(z) =

√
(Nrz − xin + β/α)2 + 4xinβ/α−Nrz + xin − β/α

2
,

where the α and β rates appear only in the form β/α, meaning that experimentally it
may not be necessary to measure both.

A few more words can be spent here for a better comprehension of the physical mean-
ing of α, which may be defined as single receptor binding rate. It represents indeed the
average binding rate of the drug to one particular receptor: if multiplied Nrz(0) times,
it gives the overall binding rate of the system when all the receptors are available(1). α
is not measurable but, since Nr and z(0) should be known for the cell line under study,

(1) We are tacitly assuming that z(0) is the maximum cell number containable by the culture.



RADIOBIOLOGICAL MODEL FOR β-RPT IN DYNAMIC CELL CULTURES 5

Fig. 1. – Left: molecular uptake kinetics of a radiopharmaceutical binding to the cell membrane
in vitro, setting α = 10−3 s−1, β = 103 s−1, Nr = 104, xin = 104, z = 103; right: in vivo case
with the addition of γ = 5× 10−3 s−1.

it could be obtained by a measurement of the overall rate right after the radiopharma-
ceutical injection, αNrz(0

+), or using a stable isotope. Finally, for a fixed z, a constant
rate αNrz could be assumed in the Nrz � xin limit, as seen in eq. (4).

At this point, let us focus on the cell population, z(t). Its behaviour will be studied
better below, but we already know that the characteristic times of the processes affecting
it may take several hours, while pharmacokinetics acts at smaller timescales [14,34]. As
just shown, x(t) has an asymptotic equilibrium when z is fixed; thus, if the uptake is
much faster than the cell number variation, we can simplify our system by associating
xeq(z) to every z. Naturally, this timescale separation is reliable only in presence of a
highly performing targeting agent; such an approximation can be very helpful also from
a computational point of view, since a bigger dt can be chosen in the numerical analysis.
Actually, the in vitro behavior expressed by eq. (4) represents a lucky case; for instance,
eq. (3) reaches the equilibrium only when there is no more drug left, due to the effect
of the biological elimination γ, typical of in vivo systems. For simplicity, from now on
we will build our radiobiological model considering the timescale separation, thus using
the xeq(z) defined by eq. (5). Anyway, we must remember that for slow uptake kinetics
—which is undesirable for a therapeutic radiopharmaceutical— this approximation will
not work and eq. (4) will have to be implemented in the final system.

2
.
2. Radiobiological assumptions . – Let us now approach the description of the pro-

cesses affecting the cell population, i.e., DNA damage and repair, cell growth and cell
death. The idea is to adopt the CL definition provided in sect. 1 and split the cell
population into N compartments containing cells with increasing number of unrepaired
CLs at time t. The notation used and the rules followed by the compartments can be
summarized as follows (see also the scheme in fig. 2).

1) The n-th compartment, containing cells with n CLs at time t, is called zn(t), while
z(t) remains the total number of cells; z0(t) represents the undamaged cells, which
are also the only ones considered capable of growing by mitosis.

2) An additional compartment, za(t), includes the cells in which one or more CLs have
degenerated into lethal aberrations, implying sure death with a rate η; such cells
still express the target receptors, hence they contribute to the total amount z(t).
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Fig. 2. – Illustrative scheme of the cellular compartments considered in the present model.

3) Each CL has a constant repair rate ρ, while the damage rate d depends on t and z(t)
and will be defined below; the CL can be successfully repaired with a probability
kr ∈ [0, 1], otherwise it becomes a lethal aberration with ka ≡ 1− kr.

The damage rate, which is in fact a CL rate, can be built in a way that favors its
computational simulation by means of Monte Carlo codes tailored for radiation transport,
like the ones mentioned in sect. 1. Since the β radiation range is long with respect to
the cell size, S-values can be computed to identify the average CL rate for a decay event
coming from the cell membrane, from neighbour cells and from the culture medium (Sself,
Scross and Sext, see fig. 3). These values have to be multiplied for the activity at time t,
namely the drug amount in the sites of interest times the decay factor λe−λt, where λ is
the radioactive disintegration constant of the selected isotope. Then, d takes the form of

(6) d(t, z(t)) =

[(
Sself + Scross

)xin − xeq(z(t))

z(t)
+ Sextxeq(z(t))

]
λe−λt,

Fig. 3. – 3D cell culture with unlabeled drug (confocal microscopy) and cellular S-values.
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which vanishes for t → ∞ and exists ∀z ∈ R
+ since

(7) lim
z→0

xin − xeq(z)

z
=

Nrxin

xin + β/α
.

Equation (6) can also express the dose-rate per cell, if the S-values consider the absorbed
dose per event instead of the CLs. Finally, for the cellular growth we can employ already
existing population models; for example, calling r the growth rate and K the carrying
capacity of the culture, healthy cells can be expected to follow a logistic law similar to
a Verhulst equation (eq. (8a)), while a Gompertzian curve (eq. (8b)) should be more
appropriate to describe cancer cells [35, 36],

ż0(t) = rz0(t)

(
1− z(t)

K

)
,(8a)

ż0(t) = rz0(t) ln
z(t)

K
.(8b)

In both cases we have the constraint that only z0(t) grows, but the environment is
occupied by all the z(t) cells. In conclusion, having applied the timescale separation for
x, the following system of differential equations results (e.g., for healthy cells):

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż0(t) = rz0(t)
(
1− z(t)

K

)
− d(t, z(t))z0(t) + krρz1(t),

...

żn(t) = d(t, z(t))
(
zn−1(t)− zn(t)

)
+ (n+ 1)krρzn+1(t)− nρzn(t),

...

żN (t) = d(t, z(t))zN−1(t)−NρzN (t),

ża(t) =
∑N

n=1 nkaρzn(t)− ηza(t).

N depends on d(t, z(t)) and ρ, and ideally represents the highest number of CLs that a
cell can bear without one of those being repaired (or misrepaired); practically, it can be
assigned ad lib to a compartment whose maximum is considered negligible with respect,
for instance, to z(0). Its existence is ensured by the following theorems.

Theorem 1 (Asymptotic behavior). Referring to eqs. (6) and (9), limt→∞ zn,a(t) = 0
and limt→∞ z0(t) = K.

Proof. When t → ∞,
∑N

n=1 żn(t) = �������
d(t, z(t))z0(t) − krρz1(t) −

∑N
n=1 nkaρzn(t) < 0 if

∃n|zn(t) > 0, so
∑N

n=1 zn(t) decreases until zn(t) = 0 ∀n. Similarly, ża(t) = −ηza(t),

which yields za(t) ∝ e−ηza(t). Hence, z0(t) will become a purely logistic variable and
reach K. These results still hold for N → ∞.

Theorem 2 (Existence of N). With reference to eqs. (6) and (9), the initial condition
z(0) = z0(0) ≥ 0 implies that ∀ε > 0 ∃N |zn(t) < ε ∀n ≥ N .

Proof. Due to the initial condition and the discreteness of the compartments, zn(t) > 0
can be achieved only for t ≥ ndt. limn→∞ ndt = ∞, thus z∞(t) can be filled only in
the t → ∞ limit. However, according to theorem 1, limt→∞ zn(t) = 0, implying also
limn→∞ zn(t) = 0. The existence of N is then guaranteed by the definition of limit.
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Fig. 4. – Schematic representation of a 3D cell culture in a tissue-mimicking scaffold in static
(left) and dynamic (right) conditions.

2
.
3. Scaffold implementation. – Up to now, the activity distribution has been assumed

uniform in the cell culture. However, one of the strengths of this model is that it can
be extended to non-uniform activity distributions, which are likely to occur in tissue-
mimicking scaffolds. As a matter of fact, the radiopharmaceutical spreads in the scaffold
depending on the way it is administered: in static cultures, it is injected from the top
and goes down by percolation; in dynamic cultures, it flows continuously through a
vessel and diffuses in the tissue (fig. 4). Such processes can be modeled with partial
differential equations solvable numerically, like the diffusion equation. Those will yield
the global radiopharmaceutical distribution c(s, t) along a spatial coordinate s, which
may represent, for instance, the height of the scaffold or the distance from the vessel:
with the substitution xin −→ c(s, t), xeq and z become functions of s as well as t. c must
not depend on z or, at least, have a separable timescale; otherwise, the equation for c
will have to be implemented in the system.

3. – Numerical results

Equation (9) is neither linear nor autonomous, so it can be solved only numerically. In
fig. 5 an example of cell population irradiated by a targeted radioisotope is shown; N = 2
was selected as zmax

3 /z(0) ∼ 10−4, however z2 looks negligible as well. The asymptotic

Fig. 5. – Numerical simulation with N = 2 cellular compartments (left) and dose-rate per cell
(right) using the following parameters: xin = 105, z(0) = 104, Nr = 103, α = 10−5 s−1, β = 10
s−1, λ = 10−5 s−1, r = 10−4 s−1, K = 104, ρ = 10−3 s−1, η = 10−4 s−1, kr = ka = 0.5, Sself = 1,
Scross = 10−2, Sext = 10−4.
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Fig. 6. – Left: numerical simulations varying xin (the other parameters are the same as fig. 5);
right: 3D plot in the z0zaz space, with the surface identified by eq. (10) in cyan.

behavior is the one predicted by theorem 1. The dose-rate per cell is also represented;
we can notice that the shape of the decay curve varies its convexity some time after the
injection: this happens because the decrease of z(t) while the activity is still high implies
a greater amount of bound radiopharmaceutical in each cell, maximizing the effect of the
Sself coefficient. In this example a global maximum is visible but, increasing λ, the trend
flattens out to a local maximum and then to a simple convexity.

Finally, fig. 6 shows z(t) for different values of injected activity, i.e., xin. Due to
the physical decay, if xin is under a certain threshold, at a given time DNA repair and
cell growth will overcome the effect of the dose-rate: z(t) will touch a global minimum
and grow until K is reached. On the other hand, if enough radiopharmaceutical is
administered, the curve will approach zero, like the case with xin = 1.23× 105. Actually,
the model is not considering the discrete nature of the number of cells z(t), thus the
curve has to be forced to zero below a threshold (e.g., 0.5), otherwise the population will
seem to “resurrect”, in agreement with theorem 1. Setting ż(t) = 0, it turns out that
the minimum, as well as the maximum K, lies on the surface identified by

(10) z = K

(
1− ηza

rz0

)
.

4. – Conclusions

A preliminary model aimed at the support of radiobiological experiments including
β-emitting radiopharmaceuticals has been built. Its main advantages, with respect to the
cell population models found in the literature [20-22], are the suitability for β-emitters
and the possibility to consider N subsequent CLs in each cell and non-uniform activity
distributions. None of its parameters needs to be extrapolated from a cell survival curve:

• cellular S-values can be estimated via Monte Carlo simulations and validated with
experimental foci assays, e.g., γ-H2AX;

• pharmacokinetics and cell growth parameters (α, β, r, K) can be measured in
non-radioactive experiments using stable isotopes;

• the remaining biological parameters (ρ, η, kr, ka) can be measured in radioactive
experiments, such as the foci assay itself.
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On the other hand, a limit of the model is certainly the fact that it can be solved only
numerically; moreover, lethal aberrations coming from non-complex DNA lesions are
neglected, as well as non-lethal aberrations, which can inactivate cells.

After the present work, the next steps will be for sure the measurement and/or com-
putation of all the physical and biological parameters, a detailed study of the molecular
transport in 3D scaffolds and the comparison with cell survival trials in the ADMIRAL
experiment. Furthermore, other conditions of interest could be implemented; among
these, we can mention the non-lethal aberrations, the coexistence of healthy and cancer
cells and the inclusion of different DNA repair pathways cooperating together, in order
to focus also on the low dose regime, where some pathways seem not to be triggered.

∗ ∗ ∗
The author would like to thank Alberto Andrighetto, Emilio Mariotti, Marcello Lu-

nardon, Silva Bortolussi, Luca Morselli and the whole ISOLPHARM Collaboration.

REFERENCES

[1] McMahon S. J. and Prise K. M., Cancers, 11 (2019) 205.
[2] McMahon S. J., Phys. Med. Biol., 64 (2019) 01TR01.
[3] Solanki J. H. et al., Radiat. Res., 188 (2017) 221.
[4] Chatzipapas K. P. et al., Cancers, 12 (2020) 799.
[5] Incerti S. et al., Phys. Med., 32 (2016) 1187.
[6] Petringa G. et al., Phys. Med., 58 (2019) 72.
[7] Douglass M. et al., Phys. Med. Biol., 60 (2015) 3236.
[8] Furuta T. and Sato T., Radiol. Phys. Technol., 14 (2021) 215.
[9] Brzozowska B. et al., Front. Phys., 8 (2020) 567864.

[10] Ballarini F., J. Nucleic Acids, 2010 (2010) 350608.
[11] Ballarini F. and Carante M. P., Radiat. Phys. Chem., 128 (2016) 8.
[12] Sage E. and Shikazono N., Free Radic. Biol. Med., 107 (2017) 125.
[13] Sakata D. et al., Sci. Rep., 10 (2020) 20788.
[14] Mukherjee B. et al., Cancer Res., 69 (2009) 10.
[15] McMahon S. J. et al., Sci. Rep., 6 (2016) 33290.
[16] Stewart R. D., Radiat. Res., 156 (2001) 365.
[17] Morris Z. S. et al., Semin. Radiat. Oncol., 31 (2020) 20.
[18] Pouget J. P. et al., Front. Med., 2 (2015) 12.
[19] Bannik K. et al., Sci. Rep., 9 (2019) 18489.
[20] Karimian A. et al., Cancer Res., 80 (2020) 868.
[21] Liu Z. et al., Appl. Math. Lett., 24 (2011) 1745.
[22] Liu Z. and Yang C., Comput. Math. Methods Med., 2014 (2014) 172923.
[23] Marcatili S. et al., Phys. Med. Biol., 61 (2016) 6935.
[24] Palmer T. L. et al., Phys. Med. Biol., 66 (2021) 115023.
[25] Shinohara A. et al., Ann. Nucl. Med., 32 (2018) 114.
[26] Doctor A. et al., Cancers, 12 (2020) 2765.
[27] Bielecka Z. F. et al., Biol. Rev., 92 (2017) 1505.
[28] Vettorato E. et al., RAD Conf. Proc., 6 (2022) 8.
[29] Borgna F. et al., Appl. Radiat. Isot., 127 (2017) 214.
[30] Verona M. et al., Molecules, 26 (2021) 918.
[31] Benfante V. et al., J. Imaging, 8 (2022) 92.
[32] Tosato M. et al., Molecules, 27 (2022) 4158.
[33] Khwairakpam O. S. et al., Appl. Sci., 13 (2023) 309.
[34] Holland J. P. et al., Phys. Med. Biol., 54 (2009) 2103.
[35] Verhulst P. H., Corresp. Math. Phys., 10 (1838) 113.
[36] Laird A. K., Br. J. Cancer, 13 (1964) 490.


