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Summary. — In this paper we sketch some elements of a new reconstruction
of the theory underlying the design of the Antikythera Mechanism based on the
mathematical knowledge available at the time of its construction.

1. – Introduction

The Antikythera Mechanism (hereafter AM) was a portable device (33 cm in height,
18 cm in breadth and 8 cm in depth), composed by more than thirty bronze gears arranged
in different trains. All of these started from a central wheel and ended on pointers moving
along dials. In total there were (at least) twelve pointers, seven on the front side and
five on the back side, all moving simultaneously and set in motion by the user through
an external knob connected via a crown gear to the main wheel. Outside the dials there
were inscriptions giving additional informations (including a parapegma) and both sides
were protected by two cover plates. These were engraved in the interior side with a sort
of user manual, explaining the phenomena shown by the device and the meaning of the
different dials. In short, the AM was a compact and highly sophisticated astronomical
computer. But what did it compute?(1)

On the front side, the motion of the seven pointers simulated the observable longi-
tudinal motions of Sun, Moon and five planets along the zodiac, represented by a scale
divided in 360 parts. Outside of this there was a moveable ring representing a lunar
calendar divided in 12 months. So, on the internal zodiac scale one could read the angu-
lar positions of the seven heavenly bodies, and on the outer calendar scale the date on
which the shown configuration could be observable. The date was probably indicated by
a separate date pointer, that could also serve the purpose to indicate the time elapsed be-
tween any two configurations. The phases of the Moon were also displayed via a rotating
sphere colored in black and white, and according to recent reconstructions an additional
pointer indicated also the position of the Moon’s orbit nodes, a very relevant information
for eclipse predictions.

On the back side, two spiral dials were engraved, with two pointers moving along them
in the outward direction with a mechanism similar to that of modern vinyl players. The
upper scale was essentially a lunisolar calendar based on the Metonic Cycle (19 tropical

(1) Reference [1] is a quick review of the current understanding of the AM, including the relevant
bibliography.
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years = 235 synodic months). The lower spiral was an eclipse-possibility calculator based
on the Saros Cycle (1 saros = 223 synodic months) approximating the time necessary
for the Sun and the Moon to return to the same relative position and in the same points
of the ecliptic. Both these cycles are of Babylonian origin and were common knowledge
for Greek astronomers well before the middle of II century BC.

Notice that the surviving fragments of the AM contain only the Sun and Moon gear
trains, whereas all the planetary gears are lost. The surviving pin-slot device used to
alter the mean motion of the Moon makes quite likely that also in the case of planets
variations of velocity were shown. Apart from this clue and a few numbers representing
planetary cycles readable in the inscriptions (of unprecedented accuracy and not found
in other sources), the reconstruction of the planetary gearings remains for the most part
conjectural.

Another matter of conjecture is the authorship. Who designed the AM? Generally
speaking, the AM is a highly advanced product of the ancient Greek tradition of sphere-
making or sphairopoiia, the art of building scale-sized objects exhibiting the configuration
and/or the movements of heavenly bodies. The simplest examples of this mathematical
art were celestial globes and armillary spheres, while the AM is a way more sophisticated
exemplar. The most revered Greek sphere-maker was Archimedes (III century BC), who
devoted a full treatise to this art. In Cicero (De re publica, I, xiv, 21-22) there is mention
of a physical model that Archimedes would have constructed himself, and his description,
albeit vague, fits well with the features of the AM. In particular, Cicero emphasizes that
Archimedes’ sphaira (which seems to have been tridimensional rather than plane) repre-
sented the simultaneous motions of Sun, Moon and planets “by a single conversio”. For
chronological reasons the AM cannot have been manufactured by Archimedes himself,
but it is undoubtedly part of his scientific legacy, probably the result of a further refine-
ment of his work. Many contextual elements indicate as a strong candidate Hipparchus
(II century BC), the last and maximum astronomer of the Hellenistic age. Among these,
the connections of the AM with the island of Rhodes, an important center for mechanical
studies where Hipparchus was active in the estimated period of construction of the AM.

Since it is unreasonable to think that such a complex device could be the result of
trial-and-error, it is only natural to ask: on what mathematical theory was the design
of the AM based? The question appears legitimate, since the AM is a brilliant (and
unique) specimen of Hellenistic scientific technology, an artifact whose design must be
based on some theoretical model of the heavenly motions, that, in some way, matched the
possibility of plane mechanization via parallel and multi-axial trains of toothed wheels.

The AM is also, among other things, the only extant astronomical source dating back
to the golden age of Hellenistic science. Therefore, its relevance for the reconstruction of
the most mature developments of Greek mathematical astronomy is immense, its very
same survival being a miracle in the general loss of Hellenistic scientific works. However,
the theoretical problem posed by the AM has not received much attention in the existing
literature, and the impact of the AM on the current views about Greek astronomy has
been practically null. We are therefore confronted with the paradoxical circumstance
that the current understanding of the AM has rewritten the history of ancient technology
without even touching upon the history of ancient science. How could it happen?

Indeed, for the back side the theoretical problem is relatively simple and the general
question appears to be settled (albeit there are still controversies on the details of the
eclipse scheme). All the informations shown on the spiral dials depend on the proper
synchronization of the motions of Sun and Moon, and the only astronomical knowledge
involved is that of the already mentioned lunisolar cycles. These have been reconstructed
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from the counting of tooth numbers and on the basis of the readable inscriptions.

For the front side the problem is far more complex(2). Its design involves the theoret-
ical problem of representing via a single rotatory input the simultaneous motions of Sun,
Moon and planets as they are observable from the Earth. In other terms, the front dial
of the AM answered the question: when the Sun is there at a given date, where should I
look to see the body x? To answer such a question is equivalent to solve the theoretical
problem of synchronizing all the heavenly motions with the motion of the Sun, and to
represent them as they appear to an observer on the Earth. Such a task appears very
ambitious also by modern standards.

Also, if we agree that the AM was a follow-up of an Archimedean tradition of sphere-
making, the theoretical question asked above overlaps with another, that, as far as I
know, has never been really addressed: what kind of theory was exposed in Archimedes’
lost treatise on sphere-making? A conjectural answer to this question, if not of historical
value by itself, may well be relevant for the not less conjectural reconstruction of the
planetary gear-work of the AM. Conversely, it seems reasonable that the AM itself can
indicate the path for the restoration of Archimedes’ lost theory of sphere-making.

To the first question, the answer one finds in the existing literature about the AM
is that it embedded some cruder version of Ptolemaic models, i.e., some simple ec-
centric/epicycle models. Such interpretation fits well with Ptolemy’s testimony about
the results achieved by previous astronomers (namely Hipparchus), and the analogy be-
tween the pin-slot device found in the Moon gear-train and a suitably calibrated epicy-
cle/eccentric construction has been taken as a confirmation of this view [3]. Therefore,
according to this interpretation, the accuracy of the astronomical predictions given by
the AM was inferior to that of Ptolemaic models, whose predictive power comes mostly
from the introduction of the equant point [4]. This view of the AM is coherent with
the general historical narrative which regards the Almagest as the culmination point of
a continuous, homogeneous and uninterrupted development of Greek mathematical as-
tronomy, going from its origins up to Ptolemy’s time. In this framework, the Almagest
would be the only extant astronomical treatise of its kind because it superseded all the
preceding works treating the same subjects, just as those of Euclid are the only surviving
Elements of Greek geometry [5, 6]. Such a continuist view seems to be shared by most
of the scholars who actively worked on the problems posed by the AM.

A different reconstruction of the general history of Greek astronomy has been pro-
posed by those who emphasized the relevance of the scientific breakdown that occurred
in the Mediterranean world at the middle of II century BC, when the Romans expanded
their dominions to the Hellenistic kingdoms of Greece, Egypt and Mesopotamia. A side
effect of this huge event was the end of the the golden age of Hellenistic science, a fact
clearly shown by the subsequent decline of Alexandria’s Museum [7, 8]. According to
this reconstruction, which was much more fashionable among historians until the begin-
ning of the XX century, Ptolemy cannot be considered as a direct successor of scientists
like Euclid, Archimedes and Apollonius, but rather as a (very skilled) mathematician
heavily relying on the work of his predecessors, although animated by very different
(pseudo-Aristotelian) conceptions of mathematical astronomy. In fact, a direct compari-
son between Ptolemy’s Mathematical Syntaxis and any one of Archimedes’ extant works
is sufficient to convince any scientific reader of the abyss that separates the two authors.

In this latter view, to which we totally adhere, the Almagest clearly cannot be taken as

(2) The most credited reconstruction of the planetary part of the AM is in [2].
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a paradigm for the reconstruction of the mathematical theory underlying the mechanical
design of the AM, which is the ripe fruit of a scientific tradition interrupted three centuries
before Ptolemy. After all, the very same existence of a device like the AM is at odds
with Ptolemy’s claim that, before him, no one had even began to establish a planetary
theory (3).

In any case, the problem of the relationship between Ptolemy and his Hellenistic
sources (notably Hipparchus) is a very complex one, and the origins of Ptolemaic models
are, to say the least, matter of debate. Historical research and fact-checking on the Al-
magest brought convincing evidence that Ptolemy is not always a reliable source about
the results achieved by his predecessors. Well-known examples are the misappropriation
of Hipparchus’ star catalogue (recently found in a palimpsest), the absence from the Al-
magest of important ideas dating back at least to III century BC (like the heliocentric
hypothesis, despite traces of it have been recognized [10]) and the numerous inconsisten-
cies between Ptolemy’s claims and the actual astronomical observations he could have
made. These were first noted by Jean-Baptiste Delambre at the beginning of the XIX
century, and after him many others have questioned the authenticity of Ptolemy’s astro-
nomical observations as they are reported in the Almagest(4).

Another cautionary argument to the exclusive use of the Ptolemy’s testimony for
the reconstruction of the astronomical theory underlying the AM is that he probably
had no access to Hipparchus’ latest works, that in the three intervening centuries of
turbulent events never found their way to the declining Library of Alexandria. In 1994
Lucio Russo first proposed a conjectural reconstruction of the astronomical knowledge
available at the time of Hipparchus, based on the study of pre-Ptolemaic sources and
therefore independent from Ptolemy’s Almagest [12]. Russo’s study is sound and, in our
opinion, his conclusions very convincing. His analysis suggests the possibility that at the
time of Hipparchus a heliocentric and dynamical theory of heavenly motions had been
developed, similar in its essential features to classical dynamics. According to Russo’s
reconstruction, this theory (used, in particular, to account for planetary motions) was
based on a principle of inertia and on the idea that deviations from such natural motion
are due to the mutual interactions of bodies. Since the time of Hipparchus is also the
period of construction of the AM, Russo’s result seems to be very relevant for the not
less conjectural reconstruction of the planetary gear-work of the AM. However, Russo’s
paper seems to have been ignored by all those who worked on this problem.

In short, even if Ptolemy’s Almagest is undoubtedly an important source of informa-
tions about the work of previous astronomers, there is a considerable risk of being misled
in the interpretation of the AM if one sticks too close to Ptolemy’s own conceptions of
mathematical astronomy.

If, on the other hand, we take the extant Greek mathematical works up to II cen-
tury BC as a leading guide in the necessary guesswork involved in the reconstruction of

(3) Elsewhere I set forth the conjecture that the Almagest could be the result of a reverse-
engineering based on a device not too far from the AM. For more details see [9], where an
explanation is also attempted of why a device like the AM could not be considered by Ptolemy’s
own criteria an actual proof of the existence of a planetary theory, reconciling his primacy claim
with his familiarity with sphairopoiia.
(4) Reference [11] is worth mentioning, where an extensive study of Ptolemy’s reported observa-
tions is carried out. The title of the book is sufficient to indicate the level reached by the debate,
but, everything considered, the factual results of Newton’s analysis seem hardly contestable.
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the planetary theory underlying the front side of the AM, we find ourselves in a com-
pletely different world: geometric algebra, numerical progressions, theory of proportions,
exhaustion methods, theory of conic sections and a huge arsenal of highly sophisticated
mathematical techniques that are completely absent from Ptolemy’s works become avail-
able. Obviously, the mathematics we find in the extant works of Euclid, Archimedes and
Apollonius is only a lower boundary to what could have been involved in the original
design of the AM. To this, we should add what we are still learning about Babylonian
astronomy of the Seleucid period, since the decipherment of cuneiform tablets keeps
revealing an unexpected complexity of numerical computational techniques that Hel-
lenistic mathematicians of the II century BC incorporated in their astronomical practice.
As well known, Hipparchus in particular played a prominent role in this assimilation
process, which began already at Euclid’s time and took the general form of a geometrical
reinterpretation of numerical algorithms(5).

From this perspective, the historical and theoretical problem posed by the discovery
of the AM becomes much more difficult (and, of course, way more interesting), but it is
my conviction that only in this way we can hope to restore the original form and meaning
of such an extraordinary device. In my PhD dissertation, I tried to answer the questions
asked above looking at the AM through the eyes of Archimedes rather than through those
of Ptolemy, and taking into account the possibility that a dynamical theory of celestial
motion was developed in II century BC. In the present paper I just anticipate some of
the arguments there developed, limiting myself to some general remarks about the role
of sphere-making in the context of Hellenistic astronomy and on a simple hermeneuti-
cal proposal about eccentric/epicycle diagrams that, as far as I know, has never been
advanced.

2. – On Hellenistic mathematics

Generally speaking, Greek mathematics (like all ancient mathematics) was much more
problem-oriented than ours. In particular, in their ripest form Hellenistic mathematical
sciences were explicitly conceived as a collection of problem-solving disciplines, scientific
arts covering a wide range of domains and sharing a common methodology. The inter-
twinement between “pure” and “applied” sciences became so tight that most branches of
mathematics borrowed their very name from the class of problems they aimed to solve,
i.e., from their intended “application” (like scenography, catoptrics or mechanics). In all
these mathematical sciences a transversal role was played by geometry and the connected
activity of drawing diagrams.

The three fundamental postulates of Euclid’s Elements, for example, are nothing but
the abstractions of the three elementary operations one can perform with a straight-edge
and a compass —draw a line, produce a line, draw a circle—, and every proposition of the
Elements is essentially a list of commands involving such operations. Every proposition
is thus the analysis or synthesis of a certain diagram, that in principle may be done
in any way, the only constraint being the adherence to the postulates. As Russo has
emphasized, it is exactly this operational character of the postulates that in Euclid’s

(5) For example, according to Berggren and Thomas the main purpose of Euclid’s Phenom-
ena was to exhibit geometrically the symmetry assumptions underlying Babylonian numerical
methods for computing the length of daylight at any given day of the year. For more details
see [13].
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system of geometry explicitly guarantees an unbreakable connection between the abstract
deductive model and something tangible existing in the real world, i.e., a diagram drawn
according to some pre-established rules.

For Greek mathematicians drawing worked also (but crucially) as a form of comput-
ing. After Eudoxus’ invention of a general theory of continuous magnitudes (IV century
BC) every mathematical problem could be framed in terms of a diagram, in which the
data of the problem were represented by the length of a given line, or area of a given
figure, or volume of a given solid, and the solution was obtained by the explicit construc-
tion of a line/figure/solid whose length/area/volume had a required ratio to that of the
given line/figure/solid. In this way, drawing instruments and geometrical constructions
became extremely powerful tools for analog computing, and any problem was generally
reduced to that of devising the most convenient construction to achieve a given purpose.
So, in short, in the context of Hellenistic science geometry was, first and foremost, a
theory of diagrams, which, as Russo beautifully summarized, entangled three activities
that in modern mathematics are often regarded as independent of each other: drawing,
computation and deductive reasoning. As such, it could be put to the service of any dis-
cipline, abstract or practical, which used diagrams to express the relationship between
magnitudes of any kind. The more the range of geometry extended, from Eudoxus’ the-
ory of proportions, to Euclid’s Elements, through Archimedes’ Method up to Apollonius’
Conics, the more extensive, expressive and powerful such diagrammatic language became
for the solution of any kind of problem. Notice, in particular, how far this conception is
from the modern idea of geometry as the “science of space”.

In their mature form, all Greek mathematics shared a similar conceptual structure,
with the construction and analysis of diagrams occupying a central role in every do-
main. What changed was the meaning attributed to the magnitudes whose reciprocal
proportions were encoded in a certain drawing, i.e., what diagrams represented, which
depended of course on the context. This point was already emphasized by Plato (Repub-
lic, VI, 510C-E), and the possible meanings and interpretations of a geometrical diagram
extended as long as “the method of mathematicians” (as Plato called it, but we could
safely say the scientific method) was applied to different classes of problems.

Despite the loss of all the advanced astronomical treatises of the Hellenistic period, it
is sure that astronomy was no exception to this epistemological framework. In particular,
also astronomy worked in strict connection with specific instruments. Gemino (I century
BC), quoted by Proclus, describes the subject matter of astronomy as follows ([14], p.
249):

There remains astronomy, which treats the cosmic motions, the sizes and
shape of the heavenly bodies, their illuminations and their distances from the
Earth, and all such questions. [...] Its parts are: gnomonics, which is engaged
with the measurement of the hours through the placement of gnomons; mete-
oroscopy, which discovers the different altitudes and the distances of the stars
and teaches many complex matters from astronomical theory; and dioptrics,
which examines the positions of the Sun, Moon, and the other stars by means
of such instruments.

So, all the three sub-branches of astronomy were identified with a specific class of prob-
lems and with the instruments employed in their solution: gnomonics with sundials,
meteoroscopy with the meteoroskopeion (a kind of astrolabe) and dioptrics with the
dioptra. To these, one should add the fascinating practice of sphairopoiia.
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3. – On sphairopoiia

Immediately before the passage quoted above, Proclus-Gemino classifies sphairopoiia
(literally construction of spheres) as a sub-branch of mechanics “in imitation of celestial
motions, as Archimedes practiced”. In different forms, this art evolved side by side with
Greek mathematical astronomy, from the first steps of the Pythagorean school (archaic
period, VI–V century BC), through its shaping at the time of Plato’s Academy (Hellenic
period, V–IV century BC), up to the golden age of Alexandria’s Museum (Hellenistic
period, III–II century BC). After II century BC there are mentions of sphairopoiia as a
received practice, but devices such as the AM were never constructed again in antiquity.

Despite in modern times the construction of mechanical devices incorporating astro-
nomical models has been a charming but mostly secondary activity, the importance of
sphairopoiia for Greek astronomy can hardly be overestimated. As Aujac has justly em-
phasized ([15], p. 7), in the hands of Greek mathematicians this art became a powerful
tool for the construction, visualization and validation of astronomical models, and the
AM shows that in its most mature form it became also a tool for automated computation
specifically adapted to astronomical problems. Working like drawing as an intermediate
operational layer between theory and phenomena, it was this blending of kinematic ge-
ometry, mechanics and astronomy that guaranteed a solid grounding to the theoretical
activity of Hellenistic astronomers.

The idea we wish to put forward is that, in its most mature developments, sphairopoiia
and theoretical astronomy were actually the very same thing, in the sense that mechani-
cal devices were designed to be an exact realization of (theoretical) astronomical models.
More specifically, we propose to regard sphairopoiia as the branch of Hellenistic as-
tronomy specifically dealing with the motions of heavenly bodies. In this regard, it is
remarkable that Proclus-Gemino defines astronomy as the science dealing with “cosmic
motions”, but then in the description of its different sub-branches —gnomonics, mete-
oroscopy and dioptrics— the word motion does not appear at all. We think that such
class of problems was the specific object of sphairopoiia.

Since it is likely that in Archimedes’ lost mechanical works a rigorous theory of ma-
chines was developed, which necessarily involved dynamical notions, through the medium
of sphairopoiia an astronomical theory could well have arisen as an application of this
theory to the reproduction of the observable celestial motions. We think that this was,
loosely speaking, the subject matter of the lost treatise on sphairopoiia: a mechanical-
astronomical theory, i.e., a theory of celestial motions that at the same time grounded the
design of mechanical devices intended to imitate such motions. Since the decipherment
of the famous Codex C we know that Archimedes explicitly used mechanics —namely
statics— to induce results that he later deduced by standard geometrical methods. His
theory of sphairopoiia would have been, in essence, an extension/application of his me-
chanical method to astronomical (kinematical) problems.

I believe that the key ingredient of this Archimedean aufhebung between astronomy
and mechanics in the art of sphairopoiia lies in the central role that circular motion
played for the Greeks as a theoretical cornerstone of both disciplines. Such theoretical
homogeneity grounded the possibility to treat in a unified way astronomical problems, in-
volving the motions of stars, Sun, Moon and planets, and mechanical problems, involving
the motions of the parts of a machine. In this way, enabling in principle to incorporate
exactly an astronomical theory in a mechanical device, and coherently with the gen-
eral epistemological framework of Hellenistic mathematics, sphairopoiia came to overlap
and perhaps even coincide with the most mature developments of Greek mathematical
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astronomy.
Depite only fragments of his works survive, it is sure that in this intertwined devel-

opment of mechanics and astronomy a crucial role was played by the already mentioned
Eudoxus, probably the most important mathematician of the Hellenic period.

Eudoxus, pupil of Plato and Archytas (one of the founders of the Greek mechanical
tradition), was the first to use a combination of circular motions to account in a relatively
simple way for the irregularities observed in planetary motions. His model, exposed in
a lost work entitled On Speeds (Περι τακών), was based on a system of concentric
spheres for each planet, rotating around different axes and with different speeds, so that
a point placed on the equator of the external sphere and carried by all these simultaneous
motions traced a spherical lemniscate called hyppopede. In this way, identifying the point
with the observable sidereal position of a planet, the model gave an account of planetary
stations and retrogradations, that could be studied through the medium of the progressive
kinematical generation of the hyppopede.

Eudoxus’ kinematical approach provided the basis for much of the further develop-
ments of Greek mathematical astronomy, which became more and more a byword for
kinematical geometry. If in Eudoxus’ Phaenomena (of which some fragments are ex-
tant) there were still references to the actual astronomical bodies, these progressively
disappeared in favor of the study of a general and “abstract” revolving sphere carrying
with it tracing points drawing circles on its surface. In this way, the simplest version
of sphairopoiia, celestial globes, allowed, on one hand, to visualize the celestial sphere,
i.e., the “abstract” or theoretical model used to account for the phenomena; and, on
the other, they became the very same instrument used to frame and solve problems of
spherical astronomy. In particular, it seems that in this domain diagrams were drawn
directly on celestial globes by the use of appropriate instruments [16]. This progressive
transformation can be clearly seen in all the surviving Greek astronomical works dealing
with the daily motions of Sun and stars and the connected problems of rising and setting
times ([14], pp. 4–8).

The point we wish to emphasize is the effective vanishing of the distinction between
the “abstract” theory and the “concrete” model: the turning sphere is the theory, in the
sense that it is, by itself, the model of a certain set of phenomena. A globe with the
proper inscribed circles, properly inclined on its support to match the local latitude, and
rotating at the proper frequency, is the exact realization of such theory of the celestial
sphere, an analog computer of some well-definite celestial phenomena and the simplest
form of sphairopoiia in the broader sense we outlined above.

4. – Hipparchus’ diagrams

At some point during the III century BC, plane astronomical models made their ap-
pearance in Greek astronomy, under the well-known form of eccentric circles (literally
off-center circles) and epicycles (literally circles upon circles). The origin of these mod-
els is a complete mystery, but the angular equivalence between eccentric/epicycle models
and the pin-slot device found in the Moon gear train of the AM has suggested a new
and evidence-based track to the solution to this problem, i.e., that such constructions
could have a mechanical origin in the context of sphairopoiia [3]. My proposal is that,
just as happened in the context of spherical astronomy, also for the problems involving
the motions of Sun, Moon and planets the evolution of theoretical models eventually
coincided with that of concrete models which embodied them. Like with Eudoxus’ con-
centric spheres, I find no reason to ascribe any physical character to eccentric circles
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(apart from Ptolemy’s later view of them) or to the AM’s pin-slot device. All these
constructions can and should be regarded as mere computational tools internal to a well
definite theory. Drawn on papyri, they were theoretical diagrams representing the graph-
ical solution of some astronomical problem. Mechanized with gears, they became analog
computers of such solutions. The AM was, in my view, a highly sophisticated example
of this kind of astronomical computer. Since the names usually associated to eccen-
tric/epicycle models are those of Apollonius and Hipparchus, I will call the whole class
of eccentric/epicycle/pin-slot constructions Hipparchus’ diagrams.

Now, the question is: if we reject Ptolemy’s interpretation and use of such construc-
tions, what could have been the original meaning of Hipparchus’ diagrams?

During the III century BC two other crucial and interconnected ideas appear in the
same span of time: relativity of observable motions, clearly demonstrated by Euclid
in the Optics as a theorem (proposition 51), and the heliocentric hypothesis, used by
Aristarchus to account for planetary phenomena (building upon ideas already circulating
in the Pythagorean School). These two facts by themselves imply as a logical consequence
that astronomical observations may not give any information about the positions in space
of celestial bodies, but only about their relative motions. This observation, that hardly
could have escaped someone like Archimedes’ (also our main source about Aristarchus’
heliocentric hypothesis), leads naturally to regard motions instead of positions, as the
primary magnitude to deal with in theoretical astronomy.

Diagrams of velocity are explicitly used in the oldest surviving Greek mechanical
treatise, the pseudo-AristotelianMechanical Problems (IV–III century BC), where figures
representing simultaneous displacements of lines and points are used in the arguments.
In particular, rules are given instructing on how motions can be theoretically analyzed
in their components and combined by the so-called parallelogram rule. Even if this work
was not a rigorous mathematical treatise, the key idea is already there: to compare
simultaneous motions and study the ratios between the lengths/areas described in the
same time. Notice that this is also a natural approach for astronomical problems, where
the only thing one can do is to compare the simultaneous motions of different bodies,
picking one among them and using it as a clock to track the motion of all the others.
This idea of simultaneous motions is also used by Archimedes to define the spiral and
solve the celebrated problem of squaring the circle.

Indeed, all the existing sources agree in indicating as the subject matter of astronomy
the study of the motions of the heavenly bodies, rather than of their positions. This is
of course a natural consequence of the simple observation that, in the skies, everything
moves at the same time, and the very same title of Eudoxus’ seminal work On Speeds
(Περι τακών) is significant in this regard. Since Eudoxus himself developed a general
notion of magnitude which applies to motions or displacements as well as to distances
or positions, we find no difficulty in the idea that diagrams of velocity could have been
considered by Hellenistic mathematicians working on astronomical problems. Notice
that Archimedes’ word for uniform motion is ισoταχέoς (literally with the same speed),
a technical term which implicitly defines motion with constant speed and recalls directly
the title of Eudoxus’ work.

Other indications come from the already mentioned Greek assimilation of Babylonian
astronomical practice, which, overall, seems to be the real characteristic element of the
more mature stages of Hellenistic astronomy and of Hipparchus’ work in particular.

It was common practice of Babylonian astronomers in the Seleucid period to describe
the motion of celestial bodies not in terms of positions and time, but rather in terms of
daily motions, where one day was defined as the time employed by the Sun to describe
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one degree on the zodiac. An example is the tablet labeled ACT 190, a listing of Moon
daily velocities over a period of 248 days, not attached to any specific date ([17], p. 179).
This was a template of displacements that could be used to generate day-by-day positions
of the Moon over any desired period.

Moreover, from the decipherment of cuneiform texts reporting calculations relative to
the motion of Jupiter, Mathieu Ossendrijver made the groundbreaking discovery that,
starting from these observed pairs of time and velocity, the position of Jupiter at any
given date was computed by a process equivalent to the so-called Merton Rule or mean-
speed theorem, i.e., by integration of the area under a trapezoidal time-velocity diagram.
Ossendrijver concludes ([18], p. 484)

The Babylonian trapezoid procedures are geometrical in a different sense
than the methods of the mentioned Greek astronomers, since the geometri-
cal figures describe configurations not in physical space but in an abstract
mathematical space defined by time and velocity (daily displacement).

We find no difficulty in imagining that also Greek mathematicians, and Archimedes in
particular, could have made use of such “abstract mathematical spaces defined by time
and velocity”, computing future celestial positions by quadrature of velocity diagrams.

My proposal is therefore to interpret Hipparchus’ diagrams not as diagrams of rel-
ative positions, but as diagrams of relative velocities, i.e., as diagrams expressing the
kinematical relationship between two bodies instead of their spatial relationship.

With a little help from William Rowan Hamilton (1805–1865), in my PhD dissertation
it will be shown how these diagrams, if properly interpreted, give a complete solution to
the astronomical problem that in modern times was called Kepler problem. Therefore,
if the view I propose will be accepted, the AM will appear to be a direct evidence that
a theory of heavenly motions mathematically equivalent to Newton’s theory of inverse-
square gravity was developed by Hellenistic mathematicians around II century BC.
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