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Delta-T noise in an inhomogeneous quantum Hall junction
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Summary. — The current fluctuations due to a temperature bias, i.e., the delta-T
noise, allow accessing properties of strongly interacting systems which cannot be
addressed by the usual voltage-induced noise. In this work, we theoretically study
the delta-T noise between two different fractional quantum Hall edge states, with
filling factors (νL, νR) in the Laughlin sequence, coupled through a quantum point
contact and connected to two reservoirs at different temperatures.

1. – Introduction

Noise is a fundamentally inescapable ingredient of any electronic device, that has
now been broadly accepted as a key tool to improve our understanding of nanoscale
conductors. Electronic noise is typically separated into two contributions: thermal (or
Johnson-Nyquist) noise [1,2] and shot noise [3]. Using atomic-scale metallic junctions [4],
it was recently showed that under a temperature rather than a voltage bias, a new non-
equilibrium noise signal could be measured, which the authors dubbed as delta-T noise.
This previously undocumented source of noise is actually a form of temperature-activated
shot noise.

Here, we propose to investigate the fate of delta-T noise in a prototypical strongly
correlated state, namely the edge states of the fractional quantum Hall (FQH) effect [5]
between different FQH states instead of equal ones as done in ref. [6]. We consider an
inhomogeneous junction involving two coupled edge states belonging to Hall fluids with
different filling factors (νL, νR). In the specific case of a hybrid junction (1/3, 1), the
problem is exactly solvable for all couplings and for any set of temperatures, showing
that contributions linear in the temperature gradient dominate [7]. This motivated us to
derive a universal analytical expression connecting the delta-T noise to the equilibrium
one up to the lowest order in the temperature mismatch, for any junction involving two
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Fig. 1. – (a) Schematic view of the inhomogeneous FQH system in a QPC geometry. (b) Mapping
of the original junction to one between FQH with the same effective filling factor g. (c) Through
duality relation, we map the problem of two FQH liquids in the weak coupling regime to the
strong coupling one described by a single FQH liquid. Figure adapted from ref. [7].

fluids belonging to the Laughlin sequence [8]. Remarkably enough, we can take into
account all orders in the tunneling amplitudes. Starting from the weak coupling regime,
where the two edges are almost decoupled, we turn our attention to the more complex and
interesting strong coupling regime, which corresponds to a non-trivial situation, where
the perfect transmission of current is reduced by scattering of fractional quasiparticles.

2. – Modeling the problem

We consider two FQH bars at different filling factors να (α = L,R) belonging to the
Laughlin sequence, i.e., να = 1/(2n + 1) (n ∈ N) [5, 8]. They are kept at two different
temperatures TL = TR + ΔT and TR = T , where parametrization has been chosen
in view of experimental implementations, and coupled through a point-like tunneling
region as depicted in fig. 1(a). The edge states of such a system are described in terms
of a hydrodynamical model [9] by a chiral Luttinger liquid free Hamiltonian of the form
(� = kB = 1)

(1) H(0) = H
(0)
L +H

(0)
R =

∑
α=L,R

vα
4π

∫
dx [∂xφα(x)]

2,

where φα are the bosonic fields describing the counterpropagating modes traveling along
the edge of the left and right QH bars. They satisfy the usual commutation relation
[φα(x), φβ(y)] = iπδαβ sgn(x − y), with α, β = L,R [9]. We assume that the two QH
systems are coupled via a QPC, placed in x = 0, which allows local tunneling between
the two counter-propagating edges. The tunneling Hamiltonian is

(2) HΛ =
Λ

2πa
e
i 1√

νR
φR(0)

e
−i 1√

νL
φL(0)

+H.c.

By considering a suitable rotation in the field space [10]

(3)

(
ϕL(x)
ϕR(x)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
φL(x)
φR(x)

)
,

with angle satisfying sin 2θ = (νR − νL)/(νR + νL), we are able to map the problem of
electron tunneling between two different FQH edges to the problem of electron tunneling
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between two identical chiral Luttinger liquids (see fig. 1(b)) with the same effective filling
factor g−1 = 1

2 (
1
νL

+ 1
νR

). The total Hamiltonian then becomes

(4) H =
∑

α=L,R

v

4π

∫
dx

[
∂xϕα(x)

]2
+

Λ

2πa
e
i 1√

g

[
ϕR(0)−ϕL(0)

]
+H.c.

In this effective picture, as the tunneling amplitude increases (Λ → ∞) we switch from
the two identical, but separate, FQH liquids to a unique one (see fig. 1(c)). This process
is embodied by a powerful electron-quasiparticle duality [11] which reflects the duality
relation between the weak- and strong-coupling limits. The strong coupling limit is
accessible through a weak-strong duality transformation [12]

(5)
ϕL(x) = ϕ̃L(x)Θ(−x) + ϕ̃R(x)Θ(x),

ϕR(x) = ϕ̃L(x)Θ(x) + ϕ̃R(x)Θ(−x).

Then, the dual Hamiltonian of the one in eq. (4) is

(6) H̃ =
∑

α=L,R

v

4π

∫
dx [∂xϕ̃α(x)]

2 +
Λ′

2πa
ei

√
g
[
ϕ̃R(0)−ϕ̃L(0)

]
+H.c.,

where we have considered substitution g → 1/g and the two tunneling strengths are
connected by relation [13]

(7)

(
Λ′

ωca

)
=

[
2−2g+1 Γg

(
1 +

1

g

)
Γ(1 + g)

](
Λ

ωca

)−g

,

where ωc = v/a is a high-energy cut-off and Γ(x) is the Euler Gamma function of a given
argument x.

3. – Universal expression for the delta-T noise

The current operator describing the tunneling current and its expectation value, re-
spectively, read

(8)

I(t) = ie
Λ

2πa
e
i 1√

νR
φR(t)

e
−i 1√

νL
φL(t)

+H.c.,

I =
1

Z
Tr

{
exp

[
−
∑

α=L,R

H
(0)
α

Tα

]
I(t)

}
,

with Z = Tr
{
exp

[
−

∑
α=L,R

H(0)
α

Tα

]}
being the partition function. Then, the zero-

frequency current noise is written as

(9) S (TL, TR) = 2

∫ +∞

−∞
dτ

[
1

Z
Tr

{
exp

[
−

∑
α=L,R

H
(0)
α

Tα

]
ΔI(τ)ΔI(0)

}]
,

where ΔI(t) = I(t)− I.
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From this expression, we can derive a universal formula for the first order expansion in
temperature gradient ΔT of the noise that applies to all orders in the tunneling amplitude
Λ and for any set of filling factors (νL, νR). For the whole calculation we refer to ref. [7].
Here, we report only the final results, which read

(10) S(TL, TR) = S0(T ) + Σ(νL, νR, T )ΔT +O(ΔT 2)

with

(11) Σ(νL, νR, T ) = −
(

νR
νR + νL

)
1

T 2

∂S0

∂β
,

where β = 1/T .
We underline the relevance of this result, which enables calculating the first-order

correction to the noise in the temperature gradient only by knowing the expression for
equilibrium noise S0(T ). In particular, our derivation does not require any assumption
concerning the strength of the tunneling between the two QH bars. This allows us to
obtain the out-of-equilibrium delta-T noise in various tunneling regimes, provided that
one is able to compute the corresponding thermal noise at equilibrium. Since eqs. (10)
and (11) are valid for all values of Λ, it is worth noticing that they can be exploited for
describing both the weak-coupling regime and the dual strong-coupling model through
the duality procedure presented in sect. 2.

In this work, we have reported on a universal expression, in terms of the tunneling
parameter for a completely generic junction, for the linear correction to the full delta-T
noise in the temperature gradient starting from the knowledge of the equilibrium noise.
Moreover, since the delta-T noise depends on both filling factors separately rather than
the sole factor describing junction, it could give us access to a more detailed analysis of
strongly correlated systems.

Then, as shown in ref. [7] it is possible to cross from the weak-coupling regime to the
strong-coupling one by applying a duality transformation.
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