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Summary. — This article is based on the talk delivered on 12 September 2022, in
the Medical Physics section of the 108th National Congress of the Italian Physical
Society (Milan). This work addresses the challenge of improving PET diagnos-
tic accuracy through an alternative approach based on the analysis of time signal
intensity patterns extracted from dynamic PET tissue time activity curves with a
deep learning model. Our framework outperforms the discriminative potential of the
classical SUV analysis, paving the way for more accurate dynamic PET-based lesion
discrimination without additional acquisition time or invasive procedures. The full
study has been published in IEEE Trans. Radiat. Plasma Med. Sci., 7 (2023) 630,
with the title Spatiotemporal learning of dynamic positron emission tomography data
improves diagnostic accuracy in breast cancer.

1. – Introduction

Positron emission tomography (PET) allows the quantification of the biochemical
properties of tissue under investigation through the injection and detection of a targeted
radiotracer [1]. A PET image is an in vivo map of the spatiotemporal tracer concentra-
tion that includes details on the delivery of the tracer to tissue, how it interacts with the
target, and the washout effects, which can be inferred from the shape of the tissue time
activity curves (TACs) extracted voxelwise from the dynamic PET image [2,3]. However,
this type of quantitative analysis often requires arterial cannulation and blood sample
collection throughout the whole PET acquisition [4-6]. In clinical practice, PET data is
acquired following a static acquisition protocol and the standardized uptake value (SUV)
is the most widely used PET-derived (semi-)quantitative information in clinical and re-
search applications [7]. This standardization assumes the amount of the non-metabolized
tracer in the region of interest (ROI) to be negligible and that the time integral of plasma
tracer concentration is proportional to the amount of tracer injected [8]. However, these
presumptions frequently lead to non-negligible errors in the full quantification of tracer
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kinetics [8]. Dynamic PET may be able to lessen the large time dependence seen in
SUV quantification of normal tissue and tumor uptake values, allowing greater flexibility
and reliability in clinical practice [9]. The main objective of this paper is to compare
the information content, and therefore the discrimination performance, embedded in the
time domain of dynamic PET acquisitions compared to a traditional, static dataset. To
this end, we combined several machine- and deep learning architectures on clinical data
obtained from a cohort of breast cancer patients who received dynamic 3-deoxy-3-18F-
fluorothymidine (18F-FLT) PET scans for a relatively straightforward task (classification
between lesion and reference tissue) in order to highlight any potential static-vs dynamic
effect.

2. – Materials and methods
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1. The Dataset . – We employed a publicly available clinical 18F-FLT PET dataset of

44 breast cancer patients, part of the “ACRIN-FLT-Breast (ACRIN 6688)” collection in
the Cancer Imaging Archive (TCIA) [10-12]. For the purpose of this study, only baseline
dynamic 18F-FLT PET scans were employed.
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2. Data processing . – For each patient, consecutive regions of interest were manually

contoured around the tumor and the contralateral healthy breast by an experienced
radiologist on the static PET image. The 18F-FLT radioactivity concentrations within
the volumes of interest were normalized to injected radioactivity and patient body weight
to obtain SUV values [10]. PET data were preprocessed into various shapes to test our
deep learning architectures: a) Time series (1D data). For each patient, a median of 574
(range, 63 – 6954, according to lesion size) TACs were extracted in a voxel-wise manner
using the above-mentioned reference and lesion masks. TACs were linearly resampled
onto a uniform time axis (one sample every 10 seconds for a total of 331 samples) (fig. 1).
b) Static images (3D data). For each patient, a 30× 30× 10 box was positioned around
the tumor and, as before, flipped onto the contralateral healthy breast on the static PET
image to obtain a control image. c) Dynamic images (4D data). The box outlined in b)
was extended to the 45 timeframes of the dynamic PET acquisition.

Fig. 1. – Pipeline. Volumes of interest were drawn in the lesion (red) and reference healthy
tissue (green) for the extraction of time activity curves. They represent the concentration of the
tracer in the tissue over time (average shown in the figure).
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3. Spatiotemporal deep models for dynamic PET data processing . – Dynamic PET

data were employed to perform a binary classification task: tumor vs healthy tissue.
For 1D data, we performed a binary classification between tumor and healthy refer-
ence tissue at the voxel level (i.e., a massively univariate segmentation task). Given
the temporal structure of this data, we compared convolutional monodimensional fil-
ters (CONV1D), long short-term memory (LSTM) models, and a combination of the
two (CONV1D+LSTM). We also tested a transformer model adapted to time series
classification [13], which, unlike the previously mentioned architectures, relies on an at-
tention mechanism. In addition, we performed a binary classification between boxes
which contained cancerous lesions and contralateral control regions using (separately)
static and dynamic images. We compared models that employed three-dimensional con-
volutional layers (CONV3D) for the classification of static (3D) PET images to more
sophisticated architectures, where we extracted spatiotemporal features from dynamic
(4D) PET data using a combination of three-dimensional convolutional filters and LSTM
in the CONV3D+LSTM model, and a set of depthwise separable convolutional layers
where dynamic PET time evolution was encoded in the channel dimension of the filters
(SECONV3D model). For comparison to standard clinical procedures, the performances
of our models were compared to the commonly employed SUV measure. For 1D data
classification, voxelwise SUV values were extracted from both lesion and reference tissue
and used as input for XGBoost and support vector machine (SVM) classifiers. For image
classification, static SUV images (3D data) were compared to both static and dynamic
PET data using the CONV3D model. The sample was split into training (80%), valida-
tion (10%) and testing sets (10%) and normalized by the mean and standard deviation
value evaluated on the training set. For each model, hyperparameter optimization was
performed with Optuna with a random search sampler and 200 trials.

3. – Results

When classifying 1D time series, the best performance was obtained by the CONV1D
model with 92% accuracy (AUC = 0.97) in comparison to 78% accuracy obtained with
the LSTM (AUC = 0.86) and 80% accuracy obtained with a combination of the two
(CONV1D+LSTM, AUC = 0.90). The transformer-based architecture discriminated
lesion-derived TACs with 65% accuracy (AUC = 0.70). CONV1D model, based on
temporal features only, showed better performance than gold standard models (SVM
and XGBoost) across all metrics, whereas LSTM and CONV1D+LSTMs showed mixed
or worse performance as compared to baselines (SVM and XGBoost delivered 76% and
68% accuracy (AUCs = 0.76, 0.67), respectively). For each model, the receiver operating
characteristic curves and AUC values are also shown in fig. 2(A). When classifying 3D
and 4D images, the CONV3D model reached a 63% (± 0.99) accuracy (0.59 ± 0.09
AUC). This performance was notably improved when combining both temporal and
spatial feature extraction in the CONV3D+LSTMmodel (75% (± 0.09) accuracy, 0.81 (±
0.08) AUC) and when encoding the dynamic PET data time information on the channel
dimension of the SECONV3D model (73% (± 0.07) accuracy, 0.84 (± 0.08) AUC). For
each model, the receiver operating characteristic curves and AUC values are also shown
in fig. 2(B). Overall, our dynamic approaches outperformed both the SUV CONV3D
model (CONV3D model applied onto static SUV images), which classified lesion and
reference tissue with 60% (± 0.08) accuracy (AUC = 0.60 (± 0.15)), and SVM and
XGBoost models trained on maximum SUV values (SUVmax) which delivered 62% (±
0.06) and 74% (± 0.05) accuracies, respectively.
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Fig. 2. – Receiver operating characteristic (ROC) curves corresponding to model performances
in discriminating 1D (A) and 3/4D data (B) of lesion and reference tissue. In (B) average ROC
curves with 1 standard deviation (shaded area) across folds are shown.

4. – Discussion and conclusions

This study used deep architectures to process both spatial and temporal information
from static and dynamic PET images for a lesion-level classification task. When classi-
fying 1D time series, the highest accuracy was obtained by the CONV1D model which
outperformed the voxelwise classification of SUV values. Similarly, the CONV3D+LSTM
and SECONV3D models, which processed the information provided by the time evolu-
tion of the PET signal (4D data), reached 75% accuracy and 73% accuracy, respectively,
higher than gold standard SUV measures. This proof-of-concept study demonstrated
that the diagnostic accuracy of static PET can be improved with an automatic and non-
invasive deep learning approach that exploits the biochemical and metabolic information
embedded in the tissue time activity curves obtained with dynamic PET acquisition.
The results pave the way for more specific and sophisticated applications, where deep-
learned time signal intensity pattern analysis can be used for tumor segmentation or
tracer kinetic assessment without any pharmacokinetic model or measurement of the
AIF.
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