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Summary. — Analysis pipelines based on Radiomics are widely used exploration
tools in medical imaging. This study aims to define a robust processing pipeline
based on the computation of radiomic features on multiparametric Magnetic Reso-
nance Imaging data to make a Machine Learning classification between two diagnos-
tic categories. As a case study, we considered the discrimination between high-grade
and low-grade gliomas. The impact of intensity normalization techniques and dif-
ferent settings in image discretization on classification performances was studied. A
set of MRI-reliable features was defined by selecting the most appropriate normal-
ization and discretization settings. The results in glioma grade classification showed
that the use of MRI-reliable features improves discrimination performances.

1. – Introduction

Nowadays, analysis techniques based on Radiomics and machine learning (ML) offer a
great potential in medical imaging research, since they have the capability to derive large
amounts of quantitative features from images and to process them to produce clinically
meaningful output. One of the main challenges for the clinical applicability of Radiomics
is the robustness of the radiomic features [1,2]. There is no consensus nowadays regarding
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the most repeatable, reproducible and robustness features [3]. There are several steps
in a typical radiomic workflow where different choices of procedures and parameters
can be made, thus affecting the robustness of the extracted features. An international
collaboration, the Image Biomarker Standardization Initiative (IBSI) was established
with the purpose of standardizing the procedures according to which radiomic features
should be defined and extracted [4]. However, feature calculation settings and software
versions, which are fundamental aspects of the radiomic workflow [5], are not included
in the IBSI. Since normalization [6] and intensity discretization affect the robustness of
radiomic features, in radiomic studies it is important to carefully report the steps and
settings used to implement the radiomic workflow [7].

We studied these topics in our previous work [8]. In this overview, we describe how
different choices in normalization and intensity discretization parameters influence the
robustness of radiomic features and impact on their predictive power.

2. – Materials and methods

The data used in this study are a subset of two datasets of multiparametric MRI
scans of patients with brain tumor that were made publicly available on The Cancer
Imaging Archive (TCIA) [9-11]. We included 102 and 65 scans from the TCIA-GBM
and TCIA-LGG collections, respectively. For each subject, we have analyzed the T1-
weighted, T2-weighted, FLAIR, T1-Gd modality, considering the entire tumor volume.

A typical radiomic and ML analysis workflow, based on a radiomic feature extraction
step followed by a machine learning classification, has been followed in this study, as
depicted in fig. 1. In particular, we focused on the image normalization and features
extraction steps.

To compare the gray value distributions of images acquired with the same MRI se-
quence across different subjects, an intensity normalization procedure can be adopted. In
our study, we implemented the following three different types of normalization algorithms
on the images:

• Norm MinMax: We rescaled the voxel intensity values between the maximum and
minimum gray value;

• Norm RobustScaler: We rescaled the voxel intensity values by subtracting the me-
dian value and scaling data according to the quantile range;

• Norm Brainstem: For this normalization, we selected a ROI in the brainstem and
rescaled the intensity value by subtracting the median value and then dividing

Fig. 1. – A typical radiomic and ML workflow is shown.



ROBUSTNESS AND PREDICTIVITY OF MRI-BASED RADIOMIC FEATURES IN GLIOMA ETC. 3

by the IQR of the intensity values of the brainstem. We expect the intensity
of the brainstem region to be more homogeneous, which we believe makes this
normalization more robust.

The computation of the radiomic features on the multiparametric MRI images was
performed with the open source package Pyradiomics (v3.0.1) [12], IBSI compliant. We
extracted 93 features consisting of: 18 histogram-based features and 75 texture-based
features. The extraction of the texture-based and some of the intensity features requires
binning the intensity histogram. We evaluated the influence on the robustness of radiomic
features of choosing different total number of bins (8, 16, 128 and 512), which is the
parameter that determines the dynamic range of the discretized gray values of the images,
as recommended by the IBSI when dealing with non-quantitative data.

We evaluated the predictive power of radiomic features in the categorization between
LGG and HGG, by using random forest (RF) classifiers. The binary classification per-
formances have been evaluated across the various image normalization methods and the
different settings in the image discretization procedure. The RF model has been trained
according to a stratified 5-fold cross-validation (CV) scheme. Results across the 5 test
folds were collected to calculate the average AUC and its standard deviation.

The open-source Python package Pingouin [13] was used for statistical analysis. The
Intraclass Correlation Coefficient (ICC) was considered as a measure of the robustness of
the radiomic features. In particular, we selected the two-way mixed effects model, with
average raters and absolute agreement [14]. The ICC values range between 0 and 1, with
values closer to 1 representing higher robustness [15]. We studied the effect of normal-
ization and the effect of image intensity discretization on the robustness of features.

3. – Results and conclusion

All the normalization techniques implemented improved similarity among the image
histograms. However, the Norm Brainstem normalization procedures appear as the best
method. The classification performances obtained considering only the intensity features
(fig. 2(a)) depend on the normalization technique applied but are almost stable across

(b) Texture features(a) Intensity features

Fig. 2. – Performances achieved in LGG vs HGG discrimination using different numbers of gray
levels for intensity discretization and different normalization methods on intensity (a) and on
texture (b) features.
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the different choices of discretization levels. On the contrary, as shown in fig. 2(b), the
performances obtained considering only the texture features are not influenced by the
normalization strategy but a variation in the number of intensity discretization levels, for
the same normalization, leads to different performances. The trend of the AUC values
for the different choices in the number of intensity discretization levels suggests that 16
and 128 levels are good choices for the extraction of informative texture-based radiomic
features.

Further, we found out that, when varying the normalization method, the subset of
the most robust features (ICC > 0.9) is composed of 16 intensity features and, when
varying the image intensity discretization strategy, it is composed of 43 texture features.

The subset of robust features allowed obtaining stable classification performance in
the LGG vs HGG discrimination (AUC = 0.83± 0.08), regardless of the settings chosen
for image normalization and discretization of image intensity levels. Moreover, the per-
formance in glioma grade discrimination is enhanced when the set of features defined as
MRI-reliable is used (AUC = 0.93 ± 0.05). Despite the reliability of the performances
obtained in the CV evaluation, a limitation of this study could consist in the absence of
a validation of the model on external data, which could be introduced as a future im-
provement. Our results highlight that image normalization and intensity discretization
are a fundamental step in MRI analysis via Radiomics and Machine Learning. Due to
the strong impact it has on the performance of a ML classifier, special attention should
be taken in the image preprocessing step before typical radiomic analysis are performed.

∗ ∗ ∗
This work has been carried out within the Artificial Intelligence in Medicine

(next AIM, https://www.pi.infn.it/aim) project funded by INFN (CSN5) and within
the FAIR-AIM project funded by Tuscany Government (POR FSE 2014-2020).

REFERENCES

[1] Lambin P. et al., Eur. J. Cancer, 48 (2012) 441.
[2] Gillies R. et al., Radiology, 278 (2015) 151169.
[3] Traverso A. et al., Int. J. Radiat. Oncol. Biol. Phys., 102 (2018) 1143.
[4] Mitchell-Hay R. N. et al., J. Magn. Reson. Imaging, 56 (2022) 1559.
[5] Fornacon-Wood I. et al., Eur. Radiol., 30 (2020) 6241.
[6] Saltybaeva N. et al., Phys. Imaging Radiat. Oncol., 22 (2022) 131.
[7] Hoebel K. et al., Radiol.: Artif. Intell., 3 (2020) e190199.
[8] Ubaldi L. et al., Phys. Med., 107 (2023) 102538.
[9] Clark K. W. et al., J. Digit. Imaging, 26 (2013) 1045.

[10] Bakas S. et al., Segmentation Labels and Radiomic Features for the Pre-operative
Scans of the TCGA-LGG collection (Data Set), The Cancer Imaging Archive,
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF (2017).

[11] Bakas S. et al., Sci. Data, 4 (2017) 170117.
[12] Van Griethuysen J. J. et al., Cancer Res., 77 (2017) e104.
[13] Vallat R., J. Open Source Softw., 3 (2018) 1026.
[14] Liljequist D. et al., PLOS ONE , 14 (2019) e0219854.
[15] Koo T. K. and Li M. Y., J. Chiropr. Med., 15 (2016) 155.


