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THE CONTRIBUTION OF ARTIFICIAL INTELLIGENCE  
TO AERIAL PHOTOINTERPRETATION  

OF ARCHAEOLOGICAL SITES: A COMPARISON  
BETWEEN TRADITIONAL AND MACHINE LEARNING METHODS

1. Introduction

It is well known that aerial photographs are a useful working tool for 
specialists in various scientific fields (town planners, landscape architects, 
geographers, geologists, agronomists); in fact, they are vital for archaeolo-
gists specializing in the study of historical topography and ancient cities. The 
advantage provided by aerial photography is demonstrated by the possibility 
of detecting buried archaeological features through the “marks” showing 
up on the photograms, so to define with precision the geometric outline of 
buildings and burials or the course of underground road paths. Among the 
different types of tracks (damp-marks, crop-marks, soil-sites, shadow-sites) 
this research focuses mainly on crop-marks as they are characterized by a 
deep colour contrast. In fact, archaeological structures interact with the 
vegetation’s rooting apparatus deeply influencing its growth so that it can 
be either reduced or enhanced. In aerial photographs, this difference clearly 
appears in the chromatic contrast.

For example, in case of graves dug in the ground or defensive ditches, 
the vegetation will be taller and thicker, resulting in a dark green colour; 
on the contrary, plants over masonry structures or roads will be lower and 
thinner resulting in light green or yellow. Summing up the accurate metho-
dology applied to the study of aerial photographs and to the restitution of 
archaeological traces (Piccarreta 1987; Alvisi 1989; Piccarreta, Ce-
raudo 2000; Guaitoli 2003; Musson, Palmer, Campana 2005), once 
the photointerpretation activity has been completed, the specialist draws the 
archaeological evidence on a topographical map in order to locate it on the 
ground ahead of stratigraphic excavations or of more ordinary activities of 
protection, land management and development. This operation, which in 
view of its purposes requires a high degree of precision, can essentially be 
carried out in two ways: with the technical instrumentation used to produce 
topographical maps (analytical or digital photorestitutors), or using a profes-
sional software for georeferencing and orthorectifying the images and then 
CAD digitizing of the marks.

Only the first case involves real “photorestitution”. It requires an 
operator highly qualified in cartographic techniques and an archaeologist 
expert in aerial photointerpretation (archaeologists-cartographers trained 
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in both skills being unfortunately rare); the degree of precision achieved is 
centimetric or sub-centimetric depending on the scale at which the zenithal 
frames are taken. In the second case, instead, it is more correct to use the 
word “vectorisation” or “digitalisation” of the marks. This is a less accurate 
mapping method, however sub-metric. Regardless of the method employed 
and specialisation of the archaeologist, both for the photointerpretation phase 
of the traces and for the mapping on paper, many days of work are necessary 
to complete the research.

Starting from the experience gained in the ARCHEO 3.0 project “Integra-
tion of key enabling technologies for the efficiency of preventive archaeological 
excavations” 1, where automatic systems were applied for the automatic or 
semi-automatic tracing of the contours of archaeological layers detected in 
excavations through the use of photographic images (Cacciari, Pocobelli, 
Siano 2017; Cacciari et al. 2018), here we aim at verifying the feasibility 
of artificial intelligence systems for marks recognition in aerial imagery and 
at assessing its practical use in order to speed up the graphic recording time 
(Cacciari, Pocobelli in press).

The use of artificial intelligence is currently explored by other researchers, 
although in different contexts. In this respect, the advanced stage achieved by 
the experimentation of artificial intelligence systems on World War II historical 
aerial photographs in the field of civil security, for the recognition of traces 
from exploded and unexploded ordnance must be mentioned (Ozdemir, 
Remondino 2019; Shepherd et al. 2019).

In this article we present a summary of the procedure adopted and the 
results obtained. Issues deriving from image geo-referencing will be dealt 
with in a further work.

2. Materials and methods

2.1 Data-set and acquisition methods

The present research availed itself of aerial images of Vulci, one of the 
most important cities of ancient Etruria from which, according to epigraphic 
and archaeological documents, Servius Tullius, the legendary sixth king of 
Rome, came from. In my PhD in Ancient Topography I carried out a research 
on Vulci with the prevalent use of aerial photographs, in order to map the 
archaeological marks visible in the urban area and the surrounding necropolis 

1 Two Institutes of the Italian National Research Council – the Istituto di Fisica Applicata 
“Nello Carrara” (IFAC) and the Istituto per la Conservazione e Valorizzazione dei Beni Culturali 
(ICVBC), now Istituto di Scienze del Patrimonio Culturale (ISPC) – have been actively involved in 
the project ARCHEO 3.0, co-funded by the Tuscany Region (POR-CReO/FESR 2014-2020). The 
wide-ranging competences of the CNR Institutes has allowed to exploit ICT solutions in order to 
develop automatic methods of acquisition and graphic rendering of archaeological layers.
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Fig. 1 – Vulci. Top: the 1975 perspective photograph showing the marks 
of the city’s urban plan as seen from the S. Clearly visible are the main 
NS road (1) and the secondary roads that delimit the blocks (2-9). 
Around the large dark area of the “Foro Occidentale” are the “Tempio 
Grande” (12), the “Edificio Absidato” (13), the “Edificio in Laterizio” 
(14), on the right, the “Domus del Criptoportico” (11) and the so-called 
“Cardine Massimo” (10). Bottom: detail of the 1975 perspective photo 
with traces of the Etruscan temple in opus quadratum at the so-called 
“Foro Orientale” (Pocobelli 2011).
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(Pocobelli 2006). Using the traditional methods of archaeological photo-in-
terpretation and cartographic restitution my research achieved significant 
results. For example, the ancient town plan of the city was reconstructed, 
with the road network (Fig. 1) and the perimeter of the Western Forum in 
front of the famous “Tempio Grande” (Fig. 2), apparently overlooked by a 
small theatre (Pocobelli 2003, 150-151; 2004, 131-133).

Moreover, in the city’s NE area, at the foot of the acropolis, marks of 
an Etruscan temple have been identified (Fig. 1, bottom), located along the 
eastern side of a further area with a public function, the so-called “Foro 
Orientale”, previously unknown (Pocobelli 2003, 151-154; 2004, 133-
136; 2011, 120). Excavations carried out after this discovery has confirmed 
the existence of a sacred building in opus quadratum (Moretti Sgubini, 
Ricciardi 2011, 79-80). The traces found in the necropolis area are also 
interesting (Pocobelli 2007, 170-183). For instance, to the N of the ancient 
city, in the Poggio Mengarelli area, aerial imagery has clearly shown the crop-
marks determined by features excavated in the tufaceous bank (Figs. 3, 7). 
The rectangular marks are simple pit graves used at the end of the 8th century 
BC, while the architecturally more complex chamber tombs (i.e. the T-shape 
to be seen in the photographs), with a long ramp (dromos) and a rectangular 
atrium leading to the funerary hypogea, were built by aristocratic families 
from the 7th BC c. onwards (Pocobelli 2003, 154-156; 2007, 173-174). In 

Fig. 2 – Vulci. The 1975 low-altitude photo with marks visible in the so-called “Foro 
Occidentale” area (Pocobelli 2004).
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Fig. 3 – Vulci, Poggio Mengarelli. The 1997 aerial photograph and the photogrammetric 
restitution of the marks of the pit and chamber tombs (Pocobelli 2007).
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whole, this research allowed the mapping of more than 1600 pit graves and 
1275 chamber graves.

The analytical data from this previous study are here used as a com-
parative basis in order to evaluate qualitatively and quantitatively the results 
obtained. The tests were carried out on colour and B/W aerial photographs 
of both the urban area and the surrounding necropolis, by selecting images 
with a high number of marks and with different characteristics (damp-marks, 
crop-marks, soil-sites, shadow-sites), in order to verify the system’s response 
to different types of archaeological anomalies. Each single image was digitized 
in uncompressed format (*.tiff) with a flatbed scanner, in colour mode (24 
bit depth), at different resolutions (150, 300, 600 dpi) in order to assess the 
impact on the detection ability of the individual traces.

In detail, the tests were carried out on some zenithal images of the urban 
area, where the marks of roads delimiting the residential blocks are easily 
identifiable (SIAT 1986 and CGRA 1997 flights), and on other perspective 
images taken at lower altitudes (Lisandrelli 1975 flight) with a higher mark 
definition (Pocobelli 2004, 130-140) (Fig. 2). In the case of the necropolises, 
instead, images from the Poggio Mengarelli area were chosen, where some 
1997 aerial zenithal images and oblique photographs taken at lower altitudes 
clearly show the planimetric development of the pit tombs, identified by their 
rectangular crop-marks, and of the chamber tombs, easily recognisable by the 
T-shape of the dromos with vestibule, all of which were photo-restitutioned 
(Pocobelli 2007, 172-174) (Fig. 3). The images used in this research, with 
the exception of the perspective photographs of the necropolis taken by the 
author, belong to the collection of ICCD-Aerofototeca Nazionale.

G.F.P.

2.2 Image enhancement

The images considered in this work are affected by background intensity 
variations. For this reason, some areas of the captured scene result brighter 
than others. This has suggested the need of a specific filtering operation in 
order to improve the image reading before any further operation. Images 
undesirably affected by background intensity variations can be corrected 
by flat-field techniques. In general, this is accomplished with the following 
operation performed to each pixel in the image:
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dark and the flat image. The dark image is captured by covering the sensor, 
the flat by using a uniform object covering the whole field of view. Several 
dark and flat images are then acquired and the corresponding average con-
sidered for flat field calculation. The intensity of a pixel in the dark image 
represents the offset coefficient. The intensity of the corrected pixel is defined 
as the value to be corrected for the flat image:
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Fig. 4 – a) original image; b) estimated flat field; c) flat field corrected image.
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2.3 Machine Learning unsupervised algorithm for colour clustering

The range of applications involving Machine Learning (ML) techniques 
spans virtually all sectors: from product recommendations (Portugal, Alen-
car, Cowan 2018) to medical diagnoses (Bakator, Radosav 2018; Xu, 
Xue, Zhang 2019) to financial analysis (Gu, Kelly, Xiu 2020).

It is interesting to observe that this also involves disciplines that, for 
a long time, have been considered distant from this technology. It is then 
not surprising that archaeology has also benefited from ML. In particular, 
what sounds appealing in the archaeological community is the capability of 
unsupervised ML techniques to identify groups in a data set according to 
specific features (named as clusters). This task is commonly referred to as 
unsupervised learning. Since in the archaeological context, the features to be 
identified are often partial or completely unknown, the unsupervised clus-
tering may provide the earliest grouping of the available datasets involving 
minimal human intervention and a limited initial input data set. This appears 
even more intriguing in all the cases in which archaeology works with images. 
In fact, from a preliminary division of an image provided by unsupervised 
clustering, unexpected things may appear. This could help the archaeologist 
in the identification of similar features that otherwise could not be easily 
observable with naked eye.

Among the numerous unsupervised ML algorithms for clustering, in 
this work we have considered k-means clustering (Reilly, Rahtz 1992). 
The widespread diffusion of k-means algorithm is essentially due to its easy 
implementation and robustness. K-means image clustering is used with un-
labelled data (i.e. data without defined categories). The aim is to partition 
the sample data sets (image pixels) into a pre-specified number of clusters (k) 
based on some kind of similarity in the data within the k clusters.

The algorithm we have implemented for this work starts with the num-
ber of clusters (k) and the type of colour coordinates (RGB, HSL, etc.), both 
established a priori by a human operator. At this stage, the human can also 
change some image parameters such as “brightness”, “contrast”, and “gam-
ma”, in order to enhance details in the coloured image. Moreover, the human 
operator can also apply a low pass filtering operator in order to smooth the 
image. The resulting image is fed to the algorithm for colour clustering. K 
pixels in the image are picked in a random fashion. These pixels represent the 
first guess of the clusters centers (barycenters). Then a distance measurement 
(e.g. Euclidean distance) is calculated between each data point and the first 
guess of the barycenters. This calculation allows assigning each point to the 
closer cluster by reducing the in-cluster distance between all pixels. The cluster 
barycenters are then recalculated and new assignment made. The iteration 
is repeated until no further change occurs in the barycenters. A schematic 
representation is depicted in Fig. 5.
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Fig. 5 – K means clustering: a) original dataset including the first guess of the barycenters; b) first 
grouping of the original dataset in three clusters; c) and d) update of the barycenters locations 
and new clusters development; d) end of the algorithm with the identification of final clusters and 
corresponding barycenters.

At the end the algorithm has assigned each pixel in the original image 
to a specific cluster. As output, the original image is separated into k images, 
in which all the non-zero pixels belong to a specific cluster. An 8-bit number 
is then associated to all the non-zero pixels in one of the k images. This as-
signment is then repeated with different 8 bit numbers for the remaining k 
images. The resulting k images are combined into a composite image that is 
finally used with standard edge detection technique to highlight the clusters 
contours.

3. Results and discussion

Although in the proposed algorithm the human intervention could be 
considered limited, it could affect the results in terms of marks identification. 
As described above, the number of clusters and the type of colour coordinates 
are both established a priori by the human operator. In this work, the entire 
colour clustering analysis has been performed considering only two clusters. 
This heuristic choice has been motivated by the interest in separating the tomb 
contours from the background, as if there were only two elements (clusters) 
to be identified.

On the contrary, the colour coordinates choice deserves a thorough 
discussion, and cannot be defined with heuristic motivations. As preliminary 
tests, some images have been colour clustered making use of RGB, HIS, HSV, 
CieLab and CieXYZ colour coordinates. The reader unfamiliar with the 
colour coordinates if interested could benefit from the available literature on 
this topic (Meyer, Greenberg 1980; Ibraheem et al. 2012; Kahu, Raut, 
Bhurchandi 2019). As an example in Fig. 6 is reported the contour obtained 
with clustering using different colour coordinates. The images in Fig. 6 evi-
dence that some colour space can bring out certain details better than others. 
Although in the presented example the CieXYZ coordinates seem to offer the 
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best results, it should not lead us to claim that it is of general validity. What 
could be confidently stated is that any case should be preliminarily discussed 
in order to determine the best results.

Since in this work we are just interested in comparing the human results 
with the machine ones, we have focused the analysis only on RGB coordinates, 
exploring instead the effect of image resolution as well as the difference among 
coloured and black and white images.

I.C.

The results obtained through ML alghorithms, in the case of aerial 
photographs of the urban area, have evidenced low definition in terms of 
contour recognition. This can be explained considering that the large amount 
of information and the variability of the traces generate a background noise 
that does not allow a correct distinction of the shapes. This outcome is found 
both in images taken by airplane (high altitude flights) and proximity pho-
tographs (drone or low altitude flights), regardless of the image resolution.
This is mainly due to the intrinsic characteristics of the linear tracks (mostly 
structures and roads), which are not uniform in colour over their entire ex-
tension and are therefore difficult for the algorithm to recognise. In this area, 
what is intelligible to the human eye, at the current state of experimentation, 
is not fully answered by the system’s processing.

On the 1997 aerial photographs, the ML system was able to detect the 
outline of the marks in more detail than in the urban area, although it showed 
severe limitations in tracing individual graves due to the reciprocal proximity 
of the burials and the advanced growth of the vegetation (Fig. 7). However, 
areas with the presence of burials are well defined. Better results were obtained 
with low altitude photographs of the necropolis. The test also demonstrated 
the impact of image resolution on the final result. At a low resolution (150 
dpi) the system succeeded in defining the macro-areas affected by the burials 
and roughly the contours of 15 graves (Fig. 8a); at 300 dpi, although the 
background noise is still evident, the details of the traces appear improved 
and 27 graves can be recognised (Fig. 8b). At medium-high resolution (600 
dpi) the shapes of 34 chamber tombs can be seen; the presence of more burials 
helps in further delimiting the area (Fig. 8c).

Of even higher interest is the result obtained in this area with panchro-
matic images. In order to compare data, the same photographs were printed 
in bichromatic mode (see e.g. the image in Fig. 8) and scanned with the same 
parameters (Fig. 9). The differences are evident: already at 150 dpi the algo-
rithm is able to distinguish, with good approximation, the geometry of most 
(52) of the recognizable chamber tombs (Fig. 9a) and at 300 dpi the tombs 
outlined are 68. At 600 dpi the definition of the contours is optimal (Fig. 
9c), with 96 well-defined chamber tombs which, although results are in part 
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Fig. 6 – Contours obtained after colour clustering with different 
colour coordinates.

Fig. 7 – Vulci. Poggio Mengarelli. Aerial original image: details of crop-
marks of pit tombs and chamber tombs (left); with ML outlines (right).
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Fig. 8 – Contours obtained performing RGB colour clustering 
on coloured images of different resolution.
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Fig. 9 – Contours obtained performing RGB colour clustering 
on B/W images of different resolution.
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indecisive, especially in the definition of the dromoi, correspond to a per-
centage of 81.3 compared to what was mapped with the traditional method.

G.F.P.

4. Conclusions and future perspectives

Research has demonstrated that ML developed in the framework of the 
ARCHEO 3.0 project for the identification of archaeological strata under 
excavation, with appropriate calibrations and corrections can also be ap-
plied to aerial photographs for the recognition of archaeological traces, with 
interesting development prospects.

An in-depth analysis, however, shows that the response of the system 
is highly variable. The first consideration concerns the characteristics of the 
tracks. As expected, the system works well with crop-marks. In the area of the 
necropolis, where the graves show a well-defined contrast with the surround-
ing area, ML image processing produces individual traces with good results.

Conversely, where the vegetation colour is rather uniform or the marks 
are not clearly defined, the system is unable to distinguish individual elements 
but defines a contour area. In other cases, as in the urban area, where the 
human eye recognizes the regular forms of structures and road, the proposed 
automatic system is not able to detect marks.

Best results are achieved with low altitude photographs in the necropolis 
area, where the algorithm correctly distinguishes and highlights the profiles 
of the individual chamber tombs, with little loss of information.

The difference with the 1997 aerial photos depends on the different degree 
of detail in the image. In addition to the altitude at which the images were 
taken, the type and condition of the vegetation influence the possibility of 
reading the marks: in the field sown with alfalfa, the low altitude photos were 
taken in the first days of June, with vegetation in its initial state of growth, 
while the others were taken at the end of July. However, in aerial images, 
the areas with higher vegetation, where the photointerpreter distinguishes 
numerous tracks, are well defined.

The difference in system processing between colour and B/W photographs 
is also very interesting. Fig. 10 clearly shows the graphical result of the marks 
within the two types of photos: the wider range of chromatic shades leads 
to greater noise, resulting in confusion in the drawing of shapes. Instead, the 
smaller amount of grey tones allows for greater detail and a better ability of 
the algorithm to precisely define the contour of the track.

Comparison with the traditional mapping method suggests that the ML 
system needs further improvements. With regard to the amount of information 
useful for the graphic detection of graves, for example, tests on the colour im-
age at 600 dpi (Fig. 8c) indicate that the algorithm defines 34 chamber graves, 
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28.8% of the burials mapped by the traditional method (118), while in the B/W 
photo the marks – drawn with good shape definition (Fig. 9c) – are 96 (81.3%).

The cartographic comparison is also good: contours processed with ML 
show great realism and have a substantial correspondence with the marks 
mapped with the traditional restitution method. The small differences that 
can be found are due to the orthorectification of oblique images, which is 
not necessary for zenithal photographs. The error found is only a few tens 
of centimetres, comparable to the deformations that occur with CAD vec-
torisation of the tracks. Human intervention, however, is still necessary to 
integrate what is not detected by the algorithm.

Fig. 10 – Outlines obtained with 600 dpi photo (see Figs. 8 and 9): 
colour (top) and B/W (bottom).
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The failure to identify traces recognisable by the human eye – one of the 
limitations shown by the system – could be overcome by processing the same 
image several times with different parameters and filters, to create different 
layers of reading that, overlapping, can integrate the information gaps.

Image definition is perhaps another element to be considered in order 
to obtain better results, although increasing resolution up to 1200 dpi and 
the colour depth to 48 bit (now 600 dpi at 24 bit colour) makes the data to 
be processed heavier.

On the basis of the current experience, future elaborations will be carried 
out considering also the preliminary transformation of images from colour to 
B/W and also comparing the use of further algorithms and possibly exploring 
neural networks.

For the overall evaluation of the achieved results, the amount of time 
necessary to map the tracks is crucial. With the traditional method and the 
expensive technical equipment for cartographic restitution, certainly more 
precise and complete, it takes two or three days of work, while the proposed 
ML system and a standard computer require only a few tens of seconds.

However, despite the limitations highlighted in this experimentation, it 
is plausible that, with suitable improvements, ML systems will be valuable 
tools for significantly accelerating the time spent in graphical restitution. This 
in turn will help the archaeologist not specialised in cartographic restitution 
to map buried archaeological remains with decimetric approximation, in 
order to plan excavations and promote their enhancement and protection.

I.C., G.F.P.
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ABSTRACT

On the basis of the research activity carried out as part of the Archeo 3.0 project ‘Inte-
gration of key enabling technologies for the efficiency of preventive archaeological excavations’, 
the authors explore the feasibility and limits of the automated approach for the recognition of 
archaeological marks. This approach is mainly motivated by the relevance that aerial photo-
graphs play in the reconstruction of ancient topography of human settlements. For this aim, 
a collection of historical aerial photographs of both the city and the necropolis of Vulci has 
been considered. These photographs, in colour and B/W, have been previously used in a PhD 
thesis in Ancient Topography in which the traditional methodology (photointerpretation and 
cartographic restitution) has been fully exploited. In this work, a systematic study is presented 
in order to compare the results obtained with Machine Learning techniques vs traditional 
ones. This comparison allows us to discuss the strengths and limits of both methodologies.


