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(2) Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano
via Celoria 16, 20133 Milano, Italy

received 31 October 2023

Summary. — With growing studies on giant resonances, the deep insight about
their damping mechanisms draws more and more attentions. Here we provide an
alternative way to study the detailed structures of giant resonances apart from the
wavelet analysis of the high-resolution strength distribution, including isospin prop-
erties and wavefunctions, the latter of which indicates the main damping mechanism
of giant resonances. We utilize a fully self-consistent random phase approximation
(RPA) + particle vibration coupling (PVC) model to calculate the γ decay width
based on Skyrme density functional. We find that the complex configuration, i.e.,
one-particle one-hole coupled with phonon, has much larger component in the wave-
function of GQR than that of GDR, which indicates the main damping mechanisms
in these two modes are different.

1. – Introduction

γ photon is an important and clean probe for nuclear structure. On one hand, it can
excite the collective motions of the nucleus, among which the dipole excitation dominates.
On the other hand, the decay through emitting γ photon could provide detailed structure
information of the corresponding excited state, like the isospin properties and wavefunc-
tions [1,2]. Due to the well-known electromagnetic force, the corresponding cross section
or decay width between photon and nucleus are simply related with the transition prob-
abilities. Therefore, photons provide us a very clean probe for seeing the inside of nuclei
without complicated reaction mechanism involved. For experimental purpose, it calls
for the construction of γ beam facilities. One effective way to generate γ beam is the
inverse Compton scattering [3]. The low-energy photons collide with the high-energy
electrons, and hence photons obtain energies from electrons to become γ photons. Such
facilities include the High Intensity γ-ray Source (HIγS) at Triangle Universities Nuclear
Laboratory (TUNL) and the Duke Free Electron Laser Laboratory (DFELL) [4], Ex-
treme Light Infrastructure - Nuclear Physics (ELI-NP) [5], and Shanghai Laser Electron
Gamma Source (SLEGS) [6]. The study of giant dipole resonances (GDRs) is one of the
important physics goals at such facilities. For example, the microscopic structure and
damping mechanism of GDR need further investigation.
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In fact, the typical values of the centroid energy of giant resonances are 10− 15 MeV,
and the width of the giant resonances are around 3 − 5 MeV. It means that the giant
vibrations go only through few periods of oscillation before they relax. The resonance
width is composed of three parts, which are Landau width, escape width Γ↑ and spread-
ing width Γ↓ [7-9]. The Landau width is formed due to the configuration splitting in
one-particle-one-hole (1p-1h) configuration space. The escape width is caused by the
direct decay of emitting neutrons, protons, alpha particles or γ photons. The spreading
width is formed due to the fact that the correlated 1p-1h giant resonance state relaxes
into more complex 2p−2h, 3p−3h, etc. states, eventually dissolving into the compound
nucleus. Although this picture is widely accepted, the direct experimental evidences
are not many. The determination of Γ↑ is possible in experiment, however, what are
the relative contributions of Landau width and spreading width? Up to now, this ques-
tion has only been answered by wavelet analysis of the fine structure of giant resonances.
Through the high resolution (p,p’) experiments, the fine structure in the energy region of
the isoscalar giant quadrupole resonance in nuclei is observed [10]. Based on the wavelet
analysis technique, a comparison with microscopic model calculations including 2p-2h
degrees of freedom identifies the coupling to surface vibrations as the main source of the
observed scales [10]. In contrast, the inclusion of complex configurations in the calcula-
tions changes the giant dipole strength distributions but the impact on the wavelet power
spectra and characteristic scales is limited, indicating Landau damping as a dominant
mechanism responsible for the fine structure of the isovector GDR [11].

However, are there alternative ways to demonstrate the different damping mechanisms
in isovector GDR and isoscalar GQR? Direct γ decay of these giant resonances to low-
lying states offers a new possibility. Although it is only a tiny part in the escaping
width, in this contribution we will show how the γ-decay width provides the isospin
properties as well as the details of wavefunctions of giant resonances, which indicates the
main damping mechanism. The method we use is the fully self-consistent random phase
approximation (RPA) + particle vibration coupling (PVC) approach based on Skyrme
density functionals, which was first used for the calculation of γ decay in ref. [12].

In sect. 2, we describe the RPA+PVC formalism for γ-decay calculation. In sect. 3,
we provide our main results and discussions. Conclusions and perspectives are drawn in
sect. 4. The main conclusion of this paper has been published in ref. [13], however, in this
contribution we utilized a different Skyrme interaction to demonstrate the universality
of our conclusion, which doesn’t depend on the specific Skyrme interactions although the
absolute values of γ-decay width are different.

2. – Formalism

The γ-decay width Γγ of electronic multipole transition Eλ is calculated as [14]

(1) Γγ(Eλ; i → f) =
8π(λ+ 1)

λ [(2λ+ 1)!!]

(
E

�c

)2λ+1

B(Eλ; i → f),

where E represents the transition energy, and λ is the electronic multipolarity. The
reduced transition probability B between the two excited states |niJi〉 and |nfJf 〉 is

(2) B(Eλ; i → f) =
1

2Ji + 1

∣∣〈nfJf ||Qλ||niJi〉
∣∣2 ,
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Fig. 1. – The 12 lowest order NFT diagrams in the process of γ-decay between two vibrational
states. The circle with lines includes the contribution to Qλμ from nuclear polarization [12].
The arrow of time is upward.
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Due to the recoil of the nucleus, the effective charge eeffi can be induced [14].

The transitions between nuclear ground state and excited states, especially giant reso-
nances(GRs), can be well described by the RPA model [15]. However, for the transitions
between two vibrational states, the interplay between single-particle motion and col-
lective vibration will be non-negligible. Therefore, to study the γ decay from GRs to
low-lying states, we have to calculate the matrix element 〈nfJf ||Qλ||niJi〉 with a beyond
RPA model, i.e., RPA+PVC model in present work.

In the RPA+PVC model, we expand the matrix element 〈nfJf ||Qλ||niJi〉 to the
lowest order, as depicted by the 12 nuclear field theory (NFT) [16,17] diagrams in fig. 1.
For all the diagrams, there are two residual interaction vertices. However, diagrams
A-D have been naturally included in the RPA model. Diagrams E-L can only appear
in the RPA+PVC model because of the PVC vertices, e.g., 〈p′, nJ |Vres.|p〉 in diagram
E. Diagrams E, F, G, and H will contribute when the initial phonon has more complex
configurations made up with 1p-1h coupled with the final phonon, while diagrams I, J,
K, and L will contribute when the final phonon has more complex configurations made
up with 1p-1h coupled with the initial phonon. The expressions of these diagrams are
given as follows.
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〈nfJf ||Qλ||niJi〉A =

∑
pp′h

{
Ji λ Jf
jp′ jh jp

}
(−)Ji+Jf+λ+1〈p||Vres.||h, niJi〉〈h, nfJf ||Vres.||p′〉Qλpol

p′p

(EJi
− εph + iη)(EJf

− εp′h)
,(4)

〈nfJf ||Qλ||niJi〉B =
∑
pp′h

{
Ji λ Jf
jp′ jh jp

}
(−)〈h||Vres.||p, niJi〉〈p′, nfJf ||Vres.||h〉Qλpol

pp′

(EJi
+ εph + iη)(EJf

+ εp′h)
,

(5)

〈nfJf ||Qλ||niJi〉C =
∑
phh′

{
Ji λ Jf
jh′ jp jh

} 〈p||Vres.||h, niJi〉〈h′, nfJf ||Vres.||p〉Qλpol
hh′

(EJi
− εph + iη)(EJf

− εph′)
,

(6)

〈nfJf ||Qλ||niJi〉D =

∑
phh′

{
Ji λ Jf
jh′ jp jh

}
(−)λ+Ji+Jf 〈h||Vres.||p, niJi〉〈p, nfJf ||Vres.||h′〉Qλpol

h′h

(EJi
+ εph + iη)(EJf

+ εph′)
,(7)

〈nfJf ||Qλ||niJi〉E =
∑
pp′h

{
Ji λ Jf
jp′ jp jh

}
(−)〈p||Vres.||h, niJi〉〈p′, nfJf ||Vres.||p〉Qλpol

hp′

(EJi
− εph + iη)(EJi

− EJf
− εp′h + iη′)

,

(8)

〈nfJf ||Qλ||niJi〉F =

∑
pp′h

{
Ji λ Jf
jp′ jp jh

}
(−)λ+Ji+Jf+1〈h||Vres.||p, niJi〉〈p, nfJf ||Vres.||p′〉Qλpol

p′h

(EJi
+ εph − iη)(EJi

− EJf
+ εp′h − iη′)

,(9)

〈nfJf ||Qλ||niJi〉G =

∑
phh′

{
Ji λ Jf
jh′ jh jp

}
(−)λ+Ji+Jf 〈p||Vres.||h, niJi〉〈h, nfJf ||Vres.||h′〉Qλpol

h′p

(EJi
− εph + iη)(EJi

− EJf
− εph′ + iη′)

,(10)

〈nfJf ||Qλ||niJi〉H =
∑
phh′

{
Ji λ Jf
jh′ jh jp

} 〈h||Vres.||p, niJi〉〈h′, nfJf ||Vres.||h〉Qλpol
ph′

(EJi
+ εph − iη)(EJi

− EJf
+ εph′ − iη′)

,

(11)
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〈nfJf ||Qλ||niJi〉I =
∑
pp′h

{
Ji λ Jf
jh jp′ jp

} 〈p′||Vres.||p, niJi〉〈h, nfJf ||Vres.||p′〉Qλpol
ph

(EJf
− εp′h)(EJi

− EJf
+ εph + iη)

,

(12)

〈nfJf ||Qλ||niJi〉J =

∑
pp′h

{
J λ Jf
jh jp′ jp

}
(−)λ+Ji+Jf 〈p||Vres.||p′, niJi〉〈p′, nfJf ||Vres.||h〉Qλpol

hp

(EJi
− EJf

− εph + iη)(EJf
+ εp′h)

,(13)

〈nfJf ||Qλ||niJi〉K =

∑
phh′

{
Ji λ Jf
jp jh′ jh

}
(−)λ+Ji+Jf+1〈h||Vres.||h′, niJi〉〈h′, nfJf ||Vres.||p〉Qλpol

ph

(EJi
− EJf

+ εph + iη)(EJf
− εph′)

,(14)

〈nfJf ||Qλ||niJi〉L =
∑
phh′

{
Ji λ Jf
jp jh′ jh

}
(−)〈h′||Vres.||h, niJi〉〈p, nfJf ||Vres.||h′〉Qλpol

hp

(EJi
− EJf

− εph + iη′)(EJf
+ εph′)

.

(15)

The initial and final vibrational states |niJi〉 and |nfJf 〉, denoted by a wavy line in
fig. 1, are calculated with the fully self-consistent RPA method [18]. We include the
nuclear polarization effect in operator Qλpol [17], which reads

(16) Qλpol
kl ≡ 〈k||Qλ||l〉+ 〈k||Qλcorr||l〉,

where k and l can be either particle or hole state, and the correction part is
(17)

〈k||Qλcorr||l〉 =
∑
n′

1√
2λ+ 1

[ 〈0||Qλ||n′λ〉〈k, n′λ||V ||l〉
EJi

− EJf
− Eλ + iη

− 〈k||V ||l, n′λ〉〈n′λ||Qλ||0〉
EJi

− EJf
+ Eλ + iη

]
.

3. – Results and discussions

The imaginary part η and η′ are set as 0.5 MeV to take into account the coupling to
more complicated configurations. More numerical details can be found in ref. [13]. It is
worth noting that we use a large configuration space with the single-particle energy cut-
off εcut = 150 MeV. As an example, the Skyrme functional LNS [19] is used, because the
properties of low-lying states and GRs in 208Pb can be reasonably described. By checking
the results of other Skyrme functionals, we find our main conclusions are independent
from the choice of effective interaction.

We first study the isospin property of GRs from their γ decay. We compare the total
γ-decay widths Γtot

γ , the contribution from proton Γπ
γ , and the contribution from neutron

Γπ
γ . Results are plotted in fig. 2(a). The total γ-decay width Γtot

γ of the GDR → 2+1 is

285.74 eV, which is more than twice than that of the GQR → 3−1 , 123.54 eV. However,
the contributions from proton or neutron are quite different in these two cases. The Γπ

γ
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Fig. 2. – Comparison of the γ-decay widths between GDR → 2+1 and GQR → 3−1 in 208Pb (panel
(a)). The total γ-decay widths (tot.) are shown, as well as the contributions from protons (π)
and neutrons (ν). Comparison of the transition probabilities B(E1) between GDR → 2+1 and
GQR → 3−1 in 208Pb (panel (b)). Here, the total B(E1) and the average of contributions from
protons and neutrons Bπν(E1) are displayed.

and Γν
γ in the GDR → 2+1 are both much smaller that the Γtot

γ , while it is inverse in the γ

decay of GQR→ 3−1 . This phenomena results from the different isospin character of GDR
and GQR [1, 20]. The low-lying states 2+1 and 3−1 are isoscalar, which can be inferred
from the same phase of the transition densities of proton and neutron (see fig. 3(a) and
(b)). From fig. 3(c) and (d), we can also learn that the GDR is isovector while the GQR
is isoscalar. Then under the isovector operator of E1, the relative phase of protons and
neutrons in GRs will be changed, so that we finally observe the coherent contributions
of protons and neutrons in GDR → 2+1 , while the incoherent contributions of protons
and neutrons in GQR → 3−1 . Such conclusion can be further proven in the limit of exact
isospin symmetry in N = Z nucleus 56Ni [13].

On the other hand, we notice that the Γπ
γ and Γν

γ in the decay of GDR are, respectively,
145.11 eV and 49.15 eV, while in the decay of GQR they are both 3-4 times larger, namely
495.63 eV and 202.42 eV. Since the transition energy is one of the factors involved in the
expression of decay widths, we directly compare the total transition probability B(E1) as
well as the values of Bπν(E1) in fig. 2(b). Here we use Bπν(E1) to represent the average
contributions of protons and neutrons, which excludes the isospin effects. Similar as the

Fig. 3. – The transition densities of the low-lying states (panels (a) and (b)) and GRs (panels
(c) and (d)) For the GRs, only the most prominent states are shown.
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Fig. 4. – The cumulative γ-decay widths Γγ of 12 NFT diagrams of (a) GDR→ 2+1 and (b)
GQR→ 3−1 in 208Pb. The black line is the total decay width, while the red line is the average
value of the contribution from proton and neutron.

results of γ decay widths, B(E1) for the GDR decay is about 2 times larger than that
for the GQR decay, while Bπν(E1) for the GDR decay is less than 1

2 of the value for
GQR decay. The relation about Bπν(E1) is related to the wave functions of the initial
state |niJi〉 and final |nfJf 〉, which will be carefully studied later.

As stated before, the component of low-lying phonons in the wave functions of the
GRs can be learned by analyzing the contribution of different NFT diagrams. Therefore,
we compare the contributions of each diagram to the γ-decay widths, as depicted in fig. 4.
For the Γγ of GDR → 2+1 , the contributions from diagrams in RPA level almost cancel
each other, particularly for diagrams A and C. The decay width in this case is mainly
contributed by the diagrams at PVC level, which clearly shows the importance of the
PVC effect when studying the γ decay in two vibrational states. Diagrams E and G are
the two essential diagrams, which yield 76% of the total width. The case in Γγ of GQR
→ 3−1 is very similar. Although the individual contributions from diagram J and K are
remarkable, they cancel each other to a very large extent. Therefore, diagrams E and G
yield 95% of the total width in this case. Such a small contribution from diagrams I, J,
K and L is understandable, because only when the coupling of 1p-1h configurations with
the GR, |[(ph)J⊗Ji]Jf

〉, in the wave functions of low-lying state is large, the contribution
from diagrams I, J, K and L could be enhanced.

Diagrams E and G dominate the γ-decay width and they represent the contributions
(at PVC level) that arise when the wave function of the initial phonon has the component
|[(ph)J ⊗ Jf ]Ji

〉, which makes it possible to learn the wave functions of GDR and GQR
from their γ decay. Because Bπν(E1;GDR → 2+1 ) < 0.5Bπν(E1;GQR → 3−1 ), the
|[(ph)J ⊗ 3−1 ]GQR〉 component in the wave function of the GQR is much larger than the
|[(ph)J ⊗ 2+1 ]GDR〉 component in the wave function of the GDR. This conclusion is in
agreement with that of the wavelet analysis [10, 11].

4. – Conclusions

In summary, the γ decay from GRs to low-lying states in 208Pb are studied with the
RPA+PVC model by calculating the lowest order NFT diagrams. The isospin-enhancing
and suppressing effects are respectively observed in the results of Γγ of GDR → 2+1 and
GQR → 3−1 in 208Pb. To avoid the influence of isospin properties of the GDR and GQR
of 208Pb, we directly compare Bπν(E1), the average value of Bπ(E1) and Bν(E1). It
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is found that Bπν(E1) of GQR → 3−1 is much larger than the value of GDR → 2+1 .
Combining with the fact that the contribution to Γγ is dominated by the configuration
of 1p-1h coupling to a low-lying phonon, i.e., diagram E and G, we conclude that the
|(ph)J ⊗ 3−1 〉 component in the wave function of the GQR is larger than the |(ph)J ⊗ 2+1 〉
component in the wave function of the GDR.

This work demonstrate that the γ-decay of GRs to low-lying vibrational states is an
effective approach to access directly the microscopic structure of the GRs. Such kind of
analysis can be applied to the study of pygmy resonances about their collectivity and
isospin character.
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