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Summary. — We have recently implemented a fully self-consistent model based
on Quasiparticle-Vibration Coupling (QPVC model). This can be applied to Giant
Resonances of any kind, and can account for the position of the resonance main peak
(or centroid) and for the resonance width. In this contribution, we show how this
model can solve the problem of the different incompressibilities (K∞) that spherical
nuclei display. In other words, we discuss here that the values of K∞ extracted from
Sn isotopes and 208Pb turn out to be compatible, so that the famous issue of the
“fluffiness” of Sn is set. Ca isotopes and 90Zr are also compatible with the same
values of K∞, that are around 225–230 MeV. This conclusion relies on the use of
the so-called subtraction method.

1. – Introduction

The nuclear structure community has striven to infer the value of the nuclear in-
compressibility for several decades. In the 1980s, measurements of the Isoscalar Giant
Monopole Resonance (ISGMR) have been carried out, and the first estimate of the in-
compressibility has been attempted in the pioneering works by J.P. Blaizot [1]. The
nuclear incompressibility K∞ is defined by the equation
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where E/A is the energy per particle of symmetric nuclear matter, ρ is the density and ρ0
is the saturation density. As such, it is a property of nuclear matter that characterises its
Equation of State (EoS). Seeking an accurate value of this quantity is not only of interest
for validating our understanding of nuclear structure. In fact, the incompressibility of
nuclear matter also affects the dynamics of heavy-ion collisions and the physics of astro-
physical compact objects [2,3]. Core-collapse supernova, and the process of formation of
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Fig. 1. – In panel (a), a schematic picture of the nuclear breathing mode, or ISGMR, is shown.
In (b), two examples of the same correlation, between the energy of the ISGMR calculated in
a self-consistent model and the value of K∞, are displayed. The shadowed area in the right
figure is meant to illustrate the model dependence of the procedure to extract K∞ from the
experimental data.

a proto-neutron star, are sensitive to the nuclear EoS and recently it has been shown that
the same holds for the merging of compact objects and the gravitational-wave emission
[4]. In this respect, one can claim that the study of the nuclear incompressibility is an
interdisciplinary topic.

From the nuclear structure viewpoint, the compression modes of nuclei are the main
source of information on K∞. The ISGMR is the so-called nuclear “breathing mode”, in
which the nucleus contracts and expands. This mode is sketched, in a sort of macroscopic
view, in panel (a) of fig. 1. A series of experimental measurements exist, and both the
experimental and theoretical status have been reviewed a few years ago in [5]. This
latter review paper covers also another nuclear compressional mode, viz. the Isocalar
Giant Dipole Resonance (ISGDR), which is not discussed in this contribution. Panel
(b) highlights the “standard” view of how we can extract K∞ from experimental data.
Assuming that a correlation exists, in calculations, between the energy of the ISGMR
[E(ISGMR)] and the value of K∞ associated with the model that has been employed,
the left figure of panel (b) highlights how the value of K∞ can be deduced. The right
figure of panel (b) is meant to give a pictorial impression of the fact that there is not a
“universal” correlation between E(ISGMR) and K∞, as implied by the shadowed area. A
large amount of research has been devoted to quantify this spread, or model dependence.
As we now argue, there is also a nucleus dependence — that manifests itself if using the
procedure in panel (b) leads to different results when different nuclei are considered.

Some model dependence is probably unavoidable. At present, only nuclear Density
Functional Theory (DFT) models can be used to calculate the ISGMR in medium-heavy
nuclei. Such calculations are not doable, so far, using ab initio nuclear theory. Com-
parisons between various implementations of DFT have been carried out in the last two
decades, in particular focusing on confronting nonrelativistic Energy Density Functionals
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(EDFs) vs. relativistic ones. To cut this story short, in a given paragdigmatic nucleus
like 208Pb, the model dependence of K∞ has been quantified as K∞ = 240±20 MeV
in [5] and references therein. However, and this is a key point for what follows, the
calculations of E(ISGMR) that have been used to this aim are (Quasiparticle) Random
Phase Approximation [(Q)RPA] calculations. QRPA is a self-consistent theory but it is
only the simplest approximation one can employ to calculate Giant Resonances (GRs). A
systematic analysis of how the correlation depicted in fig. 1 changes when going beyond
QRPA, is called for.

The purpose of this contribution is to discuss precisely this point: we show in what
follows that going beyond QRPA we can solve, or mitigate, the model dependence and
nucleus dependence of K∞ at the same time. In particular, we emphasize and focus on
the following problem. A while ago it was pointed out that the models that reproduce
well the energy of the ISGMR in 208Pb overestimate the energy of the ISGMR in the Sn
isotopes [6,7]; in other words, an inconsistency between the values of K∞ deduced from
208Pb and Sn has been pointed out - with the Sn value being lower than the Pb value.
This fact that led to the question “why is Tin so soft?” [8-10]. If we use the “paradigm
shift” that we just mentioned, that is, if we abandon the idea that the correlation between
the energy of the ISGMR and K∞ must be explored at the QRPA level, we can solve
this “softness” puzzle.

More specifically, we employ a theoretical framework based on the (Quasi-)Particle-
Vibration Coupling (QPVC) that goes beyond the QRPA. In it, the ISGMR energies in
spherical nuclei appear to be essentially consistent with the result provided by the same
EDFs and with similar values of K∞. A few caveats are in order, though. First of all, our
conclusions rely on the so-called “subtraction method” as we describe below. Secondly,
we have so far to leave aside the case of deformed nuclei. We come back to this latter
point in the conclusion of this manuscript.

In sect. 2, we describe our QPVC implementation. In sect. 3, we provide our main
results. Conclusions and perspectives are drawn in sect. 4. The main results discussed
in this paper have been published in [11].

2. – Theoretical framework

Our QPVC model is based on self-consistent Hartree-Fock-Bogoliubov (HFB) plus
QRPA; it includes, on top of this, the coupling of the QRPA two-quasiparticle states
with so-called doorway states, made with two-quasiparticles plus one phonon. In formal
terms, this means that the excited states |N〉 of the nucleus are described by the ansatz
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where |0〉 is the nuclear ground-state, α (α†) are annihilation (creation) operators for
quasi-particles (labelled by a, b . . .), and Γ†

n is the creator of a QRPA state |n〉, that is,
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Fig. 2. – Feynman diagrams associated with the coupling between two-quasiparticles and the
doorway states. See the main text.

X and Y are amplitudes to be determined. To this aim, the Hamiltonian that we adopt
is

(4) H = T + VSkyrme,

where the first term is the kinetic energy and VSkyrme is a Skyrme-type interaction.
In principle, one could solve this Hamiltonian given the ansatz of Eq. (2) for the wave
function; however, this is too demanding from the computational viewpoint, in particular
for heavy nuclei. Therefore, we use standard projection techniques in order to obtain an
equation expressed in the two-quasiparticles basis only. This reads

(5)
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where

A(ω) = A+W ↓(ω),

B = B.(6)

Here, A and B are the standard QRPA matrices whileW ↓(ω) is the self-energy associated
with the coupling between the two-quasiparticles and the doorway states. In the present
case, we take the doorway states as non interacting (this limitation is waived in ref. [12]).
The diagrams corresponding to the self-energy are displayed in fig. 2. The model is
described in full detail in ref. [13]. The reader can also consult ref. [14] for a discussion
about the comparison between this and other models that are similar to QRPA or go
beyond it.

The numerical details of our implementation are given in the Supplemental Mate-
rial of [11]. The HFB equations are solved in spherical symmetry, with box boundary
conditions. The QRPA basis is large enough so to guarantee the respect of the appro-
priate sum rules. In a second step, the coupling of the given multipole strength (that
is monopole in the case of the calculations described in the next section) with doorway
states is carried out, namely the self-energy W ↓ is calculated and inserted into the previ-
ous equations. We have carefully checked that the results are stable with respect to the
number of phonons, or the number of doorway states, that we include.
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Fig. 3. – Correlation plots of the ISGMR energies in different nuclei. The energies are defined
as the constrained energies (see the text). In the figure, we display the energy in 208Pb on the
horizontal axis, and the energies in the other spherical nuclei, 120Sn, 90Zr and 40Ca, on the
vertical axis of the three panels. The points represent either QRPA or QPVC calculations that
have been performed with an extensive set of Skyrme forces. The coloured bands correspond to
experimental data.

We conclude this section by mentioning the use of the so-called subtraction method,
in which the self-energy W ↓(ω) is replaced by

(7) W ↓(ω) → W ↓(ω)−W ↓(ω = 0).

This procedure has been introduced in [15], by arguing that in this way one avoids the
double-counting of static (ω = 0) correlations, that are effectively taken care by when
EDFs are fit. The procedure has been justified in more formal terms in ref. [16].

3. – Results

The eigenstates of the matrix (5), that we have already denoted as |N〉, are associated
with complex eigenvalues EN ≡ �ωn− iΓN

2 . What we usually calculate, to compare with
experimental findings, is the strength function S(E) corresponding to a given operator
F , that is

(8) S(E) = − 1
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2

.

In principle, we can calculate the strengths associated with various operators of interest,
like, e.g., the dipole operator which is associated with the dipole polarizabiliy. Work
along this line is in progress [17]. In this section, we focus on results obtained with the
monopole operator. In particular, we compare the theoretical centroid energy of the
strength function with recent experimental findings. From the moments of the strength
function mk, defined as

(9) mk ≡
∫ ∞

0

dE EkS(E),

we can extract the centroid energy in different ways. We focus here on the quantity

(m1/m−1)
1/2

, that is often referred to as the constrained energy.
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In fig. 3 these energies, that we may call ISGMR energies for the sake of brevity, are
calculated with an extensive set of different Skyrme forces, either at the QRPA level or
at the QPVC level. Pairing is actually relevant in Sn while, in the other nuclei whose
results are in the three panels, QRPA (QPVC) reduces to RPA (PVC). The lines are fit
to the points, and are meant to show that, to a large extent, energies in different nuclei
are well correlated when one employs one of these models. The (Q)PVC line is shifted
in a systematic manner with respect to the (Q)RPA line: in particular, in three nuclei
at hand the shift between the (Q)RPA energy and the (Q)PVC energy is larger than in
208Pb and, thus, the blue line is below the black line.

As seen from the figure, this is a key point when comparing to experiment. Experi-
mental data are taken here from refs. [6,18-20] and correspond to the colored areas that
take the reported 1σ uncertainties into account. (Q)RPA can give a consistent descrip-
tion of Pb and Zr, but not of the other nuclei. However, including (Q)PVC correlations
we can have a full consistent description of this set of four nuclei by using some of our
interactions. In particular, these effective interactions are SV-K226 and KDE0. They
are chracterized by values of the nuclear incompressibility, K∞, equal to 226 MeV and
229 MeV, respectively,

4. – Conclusions

In this work, we have presented an application of the Quasiparticle-Vibration Coupling
(QPVC) model to the study of the ISGMR. QPVC can account for the line shape of the
nuclear Giant Resonances, including the conspicuous width that is usually of the order
of several MeV. QRPA cannot account for it, but only for a small part of it, that is
configuration mixing (the so-called Landau damping). Most of the conspicuous width, at
least in medium-heavy nuclei, is spreading width and calls for beyond-QRPA approaches.
At the same time, the QPVC energies are usually shifted downward with respect to
QRPA. In our recent work [11], we have shown that this is a key element to provide a
consistent description of monopole in a series of spherical nuclei.

In fact, in different nuclei the shifts can be, and are, different. The main conclusion
of our work is shown in fig. 3 of the current paper. The centroid energies of the ISGMR
in 48Ca, 90Zr, 120Sn, and 208Pb appear to be correlated when calculated with different
Skyrme effective forces. However, it is hard to match the experimental findings with a
given force at the QRPA level. At the QPVC level, instead, there are models like SV-K226
and KDE0 that reproduce the energies in all nuclei, in keeping with the experimental
uncertainty.

While this is a novel and very promising conclusion, a few words of caution are in
order here. This conclusion relies on the subtraction method, that consists in employing
the above Eq. (7) when including the self-energy associated with (Q)PVC correlations.
The underlying philosophy is that (Q)PVC should not affect static quantities. Along this
line, the correct value of K∞ is the value associated with either SV-K226 or KDE0 at the
mean-field level, namely either 226 or 229 MeV. The subtraction method, and its impact
on the extraction of other properties of the nuclear EoS, should be further investigated,
though.

Another open question regards deformed nuclei. Some nuclei that are deemed to
be “soft”, in the sense that their ISGMR energy is consistent with low values of K∞,
may have an intrinsic deformed shape. In the case of, e.g., axial deformation, the total
angular momentum J is not a good quantum number any longer but only the projection
K on the intrinsic symmetry axis is. This produces a coupling between the ISGMR and
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the K = 0 component of the quadrupole resonance. All this has been discussed in the
literature (cf., e.g., [21] and references therein), but its impact on the extraction of K∞
has still to be carefully assessed. Projected QRPA is still under development in exact
form, while only approximate versions have been implemented so far.

Last but not least, a recent paper [22] has confirmed the importance of PVC correla-
tions also when staring from a covariant EDF. The calculations of this latter work point
to a larger K∞ than what we have found (K∞ = 251 MeV). However, the analysis of [22]
is based on a single EDF. Extensive QPVC calculations based on a series of functionals
with different incompressibility, in a similar way as we have shown here, would be highly
welcome.
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