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Summary. — It is known that the moment of inertia (MoI) for the collective
rotation is strongly influenced by the pairing correlation. The ground-state MoI
is investigated for about 1700 even-even nuclei from the proton drip line to the
neutron drip line up to Z = 120 and N = 184 to discuss the pairing properties in
exotic nuclei. To this end, the cranked Skyrme-Hartree-Fock-Bogoliubov equation is
solved in the coordinate space. This model describes well the available experimental
data of more than 300 nuclides possessing an appreciable deformation. I find that
the predicted MoI near the drip line depend on the choice of the pairing functional
having different density dependence. A systematic measurement of the excitation
energy and the transition probability to the first Iπ = 2+ state in neutron-rich nuclei
can constrain the density dependence of the pairing functional.

1. – Introduction

Pairing and the emergence of superfluidity are universal collective behaviors occurring
in many-fermionic systems. Superfluidity, typically defined as the ability of a liquid to
flow through narrow channels without apparent friction, represents just one facet of
its fascinating array of properties. Among these intriguing characteristics is the Hess-
Fairbank effect [1], an extraordinary phenomenon observed when a liquid in a rotating
container, cooled to the superfluid phase, transitions from initially rotating with the
container to seemingly coming to rest. The moment of inertia (MoI) thus behaves non-
classically.

The pairing correlation is a fundamental aspect of atomic nuclei, playing a crucial role
in describing various static and spectroscopic properties. These properties include the
energy gap observed in spectra of even-even nuclei, the phenomenon of odd-even stag-
gering in binding energies, the strong collectivity exhibited in low-frequency quadrupole
vibration, and the reduced MoI for rotation compared to rigid-body estimations [2, 3].
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Recently, various spectroscopic studies have been carried out to explore unique struc-
tures in neutron-rich nuclei. The excitation energy of the 2+1 state, E(2+1 ), is often among
the first quantities accessible in experiments and systematic measurements have revealed
the evolution of the shell structure [4-6]. Besides the change of the shell structure asso-
ciated with the onset of deformation, the E(2+1 ) value may provide rich information on
exotic nuclei. A significant lowering of the E(2+1 ) value observed in the near-drip-line
nucleus 40Mg could be a signal of new physics in drip-line nuclei [7], as the theoretical
calculations have predicted that the magnitude of deformation is not enhanced in 40Mg
comparing with the Mg isotopes with less neutrons [8-15]. The E(2+1 ) value should be
scrutinized by taking not only the deformation but the superfluidity into account.

Another critical issue in exploring the drip-line nuclei is a need for the careful
treatment of the asymptotic part of the nucleonic density. An appropriate framework
is Hartree-Fock-Bogoliubov (HFB) theory, solved in the coordinate-space representa-
tion [16]. This method has been used extensively in the description of spherical systems
but is much more difficult to implement for systems with deformed equilibrium shapes.
Therefore, calculations have been mostly restricted to axially symmetric nuclei [17-22].
A standard technique to describe the non-axial shapes is to employ a truncated single-
particle basis, which consists of localized states and discretized-continuum oscillating
states, for solutions of the HFB equation [23]. Such a method should not be able to
describe adequately the spatial profile of densities at large distances. Recently, the HFB
equation has been solved by employing the contour integral technique and the shifted
Krylov subspace method for the Green’s function [24, 25] to circumvent the successive
diagonalization of the matrix with huge dimensions.

In the present paper, I investigate the rotational motion in neutron-rich nuclei, in-
cluding drip-line nuclei, with an emphasis on pairing. Here, I study the lowest spin state,
the 2+1 state, in even-even nonspherical nuclei. The MoI is evaluated microscopically by
the self-consistent cranked-HFB employing the Skyrme-type energy-density functional
(EDF) augmented with the pairing EDF. The calculated MoI is sensitive to the pairing
EDF employed.

2. – Model

To describe the rotating superfluid nuclei, I directly solve the coordinate-space cranked
Skyrme-HFB equation in the quasiparticle basis:

∑
σ′

[
hq′
σσ′(r) h̃q

σσ′(r)

4σσ′h̃q∗
−σ−σ′(r) −4σσ′hq′∗

−σ−σ′(r)

] [
ϕq
1,α(rσ

′)
ϕq
2,α(rσ

′)

]
= Eα

[
ϕq
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ϕq
2,α(rσ)

]
,(1)

which is obtained by extending the formalism developed for describing the ground-state
properties of even-even nuclei near the drip line [16]. Here the single-particle Routhian
and the pair Hamiltonian are defined by using a Skyrme EDF combined with a pairing

functional E[ρ, ρ̃, ρ̃∗] as hq′
σσ′(r) =

δE[ρ,ρ̃,ρ̃∗]
δρq

σ′σ(r)
− (λq + ωrotjz)δσσ′ and h̃q

σσ′(r) =
δE[ρ,ρ̃,ρ̃∗]
δρ̃q∗

σ′σ(r)
.

I define the z-axis as a quantization axis of the intrinsic spin and consider the system
rotating uniformly about the z-axis with the rotational frequency ωrot. The MoI is
evaluated microscopically by the Thouless-Valatin procedure or equivalently the self-
consistent cranking model as J = limωrot→0

Jz

ωrot
with Jz = 〈Ĵz〉. I take the natural

units: � = c = 1.
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I solve the CHFB equation by diagonalizing the HFB Hamiltonian in the three-
dimensional (3D) Cartesian-mesh representation with the box boundary condition.
Thanks to the reflection symmetries, I have only to consider the octant region explicitly
in space with x ≥ 0, y ≥ 0, and z ≥ 0; see refs. [26, 27] for details. I use a 3D lattice
mesh xi = ih− h/2, yj = jh− h/2, zk = kh− h/2 (i, j, k = 1, 2, · · ·M) with a mesh size
h = 1.0 fm and M = 12 for each direction. A reasonable convergence with respect to the
mesh size h and the box size M is obtained for not only drip-line nuclei but medium-mass
nuclei [28]. For diagonalizing the HFB matrix, I use the ScaLAPACK pdsyev subrou-
tine [29]. A modified Broyden’s method [30] is utilized to calculate new densities during
the self-consistent iteration. The quasiparticle energy is cut off at 60 MeV.

3. – Results and discussion

3
.
1. Validity of the model . – The MoI of the ground state is evaluated at ωrot =

0.01 MeV [31]. I employed the SkM* [32] and SLy4 [33] functionals augmented by the
Yamagami-Shimizu-Nakatsukasa (YSN) pairing EDF [34], which is given as

(2) Epair(r) =
V0

4

∑
τ=n,p

gτ [ρ, ρ1]|ρ̃τ (r)|2

with

(3) gτ [ρ, ρ1] = 1− η0
ρ(r)

ρ0
− η1

τ3ρ1(r)

ρ0
− η2

[
ρ1(r)

ρ0

]2
.

Here, ρ(r) and ρ1(r) are the isoscalar and isovector densities, τ = n (neutron) or p
(proton), and ρ0 = 0.16 fm−3 is the saturation density of symmetric nuclear matter.
The parameters V0, η0, η1, η2 were optimized to reproduce the experimental pairing gaps
globally and are summarised in table III of ref. [34]. Note that the parameters for the
ρ1 dependence η1, η2 are positive, and τ3 = ±1 for neutron/proton is introduced in
the linear term of ρ1 to preserve the charge symmetry of the pairing EDF. The YSN
pairing functional was constructed based on the finding that the inclusion of the isospin
dependence in the pairing functional gives a good reproduction of the pairing gaps in
both stable and neutron-rich nuclei and in both symmetric nuclear matter and neutron
matter [35, 36].

There are 657 even-even nuclei with known E(2+1 ) [37]. In the present study, I limit
the scope by excluding the very light nuclei (Z < 10), for which mean-field theory is
least justified. This eliminates 22 nuclei. The experimental data evaluated as 3/E(2+1 )
for 635 nuclei are displayed in fig. 1(e). There is no collective rotation in spherical nuclei
where the MoI is zero. Actually, I defined the spherical nuclei if the calculated MoI is
less than 0.1 MeV−1. Additional 273 (260) nuclei have been eliminated for that reason,
leaving 362 (375) nuclei in the present analysis using the SkM* (SLy4) functional.

Figures 2(a) and 2(b) show the calculated MoI obtained by using SkM* and SLy4
versus experimental ones. The points follow the diagonal line reasonably well with some
scatters that vary in extent over the different regimes. For transitional nuclei, one may
wonder about the validity of the present model. The filled symbols in figs. 2(a) and
2(b) denote the weakly deformed nuclei with quadrupole deformation β < 0.1. These
nuclei give a small value for the MoI, corresponding to higher E(2+1 ) than measurement.
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Fig. 1. – Calculated moments of inertia J for the SkM* and SLy4 functionals. The experimental
data are taken from ref. [37], which is evaluated as 3/E(2+1 ).

Furthermore, one sees a distinct deviation from the straight line for the highest region
around J = 60 MeV−1: 238,240Cm and 244Cf.

To make a quantitative measure of the theoretical accuracy, I compare theory and
experiment, and examine the statistical properties of the quantity R = Jth/Jexp. Here
Jth and Jexp are the theoretical and experimental MoI. A histogram of the distribution
of R is shown in figs. 2(c) and 2(d). For SkM* (SLy4), the average is R̄ = 1.02 (1.16).
When excluding the weakly deformed nuclei with β < 0.1, R̄ = 1.07 (1.15) for 332 (350)
data. Therefore, the present model overestimates the MoI by about 10%.

The width of the distribution is an important quantity to determine the accuracy and
reliability of the theory. One sees that the error is systematic, and the overall distribution
is strongly peaked when excluding the weakly deformed nuclei that cause a tail in small
R. The root-mean-square deviation, the dispersion, of R about its mean is σ = 0.30
(0.35).

It is interesting to compare the present calculation with the beyond-mean-field type
calculations [38, 39]. The excited 2+ states were obtained by the minimization after
projection (MAP) and the generator coordinate method (GCM) using the SLy4 func-
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Fig. 2. – Calculated MoI for 362 nuclei for the SkM* functional (a) and 375 nuclei for the SLy4
functional (b) augmented by the YSN pairing functional are plotted versus experimental ones.
Filled symbols indicate 30 (25) nuclei possessing a weak deformation with β < 0.1 with SkM*
(SLy4). Histogram of the quantity R = Jth/Jexp for the SkM* (c) and SLy4 (d) data set. The
area in the dark indicates nuclei possessing a weak deformation with β < 0.1.

tional [38] or the 5-dimensional collective Hamiltonian (5DCH) based on the GCM to-
gether with the Gaussian overlap approximation using the Gogny D1S functional [39].
The authors in refs. [38,39] introduced the measure RE = ln(Eth(2

+)/Eexp(2
+)) to eval-

uate the validity of the theoretical framework. Then, I evaluate E(2+) as 3/J in the
present model.

Table I summarizes the statistics for the performance. The present model gives a
compatible description for the average of the energy to the 5DCH approach for deformed
nuclei. The dispersion is also comparable to these models. This comparison indicates
that the 2+1 state is mostly governed by the rotational MoI of the ground state, and
the self-consistent cranking model describes the 2+1 state surprisingly well for deformed
nuclei with β > 0.1. However, it does not mean the rotational band with the excitation
energy ∝ I(I + 1) appears even above I = 2 because I have evaluated the MoI in the
limit of ωrot = 0.

I briefly mention the performance of the intrinsic quadrupole deformation. For se-
lected nuclei of the Nd and Sm isotopes, it was demonstrated that the mean-field ap-
proximation describes well the evolution of deformation; see fig. 1 of ref. [40]. There are
396 even-even nuclei with known β [37], where the deformation parameter is evaluated

from the E2 transition probability: β = (4π/3ZR2
0)
√
B(E2)/e2 [2]. I exclude 10 very

light nuclei (Z < 10). Additional 156 (146) spherical nuclei have been eliminated as in
the above analysis, leaving 230 (240) nuclei. I define the measure Rβ = ln(βcal/βexp)
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Table I. – Statistics for the performance of the CHFB calculations. Averages R̄E and standard
deviations σE for measured E(2+) are summarized. The values for MAP and GCM are taken
from ref. [38], while 5DCH is from ref. [39]. The mixed and surface-type pairings correspond to
the EDF with η0 = 0.5, η1 = η2 = 0 and η0 = 1, η1 = η2 = 0 in Eq. (3), respectively.

model # of nuclei R̄E σE

CHFB (SkM*+YSN) 332 −0.021 0.33
CHFB (SkM*+mixed) 325 0.029 0.35
CHFB (SLy4+YSN) 350 −0.095 0.30
CHFB (SLy4+mixed) 356 −0.053 0.37
MAP (SLy4+surface) 359 0.28 0.49
MAP (SLy4+surface) 135 (deformed) 0.20 0.30
GCM (SLy4+surface) 359 0.51 0.38
GCM (SLy4+surface) 135 (deformed) 0.27 0.33
5DCH (D1S) 519 0.12 0.33
5DCH (D1S) 146 (deformed) −0.05 0.19

similarly to E(2+1 ). I then find R̄β = −0.12(−0.11) with the dispersion σ = 0.35(0.30) for
SkM* (SLy4), and R̄β = −0.08(−0.09), σ = 0.26(0.22) for 219 (233) nuclei with β > 0.1.
The performance is as good as for the MoI.

3
.
2. MoI of neutron-rich nuclei . – Then, I investigate the MoI of neutron-rich nuclei,

and discuss unique features near the drip line. A striking feature observed in the result
shown in fig. 1 is that the predicted MoI strongly depended on the pairing functional
employed in the calculations, as indicated by squared regions. Figures 1(a) and 1(c) show
the calculated MoI with the YSN pairing. I include the even-even nuclei up to Z = 120
and below the magic number of N = 184. The MoI of the rare-earth nuclei near the drip
line are comparable to those of the heavy actinide nuclei, although the mass number is
different by about 40. The calculated MoI obtained by employing a mixed-type pairing
EDF do not show such an enhancement near the drip line, as shown in figs. 1(b) and
1(d).

A significant enhancement of MoI near the drip line using the YSN functional is due
to a deformed-shell effect and an isovector-density dependence (an effective decrease in
the strength) of the pairing functional. Indeed, this mechanism explains the lowering of
E(2+1 ) in

40Mg [28]. The reduction in the strength of the pair interaction with an increase
in the asymmetry can be seen by the comparison of figs. 3(a) and 3(b). A reduction of
the MoI relative to the rigid body is due to the pairing, and the reduction found in very
neutron-rich nuclei with the asymmetry α = (N − Z)/A > 0.3 is apparently weakened
when using the YSN pairing functional. Scattering of the data points is associated with
the shell effect.

As the quadrupole collectivity increases, one sees a lower energy and a stronger tran-
sition. Empirically, the following relation has been found and 91% of the observed 328
data points are reproduced within a factor of two [41]:

(4)

[
B(E2; 0+1 → 2+1 )

1 e2fm4

]
×
[
E(2+1 )

1MeV

]
= 32.6

Z2

A0.69
.
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Eq. (5) with the approximation R0 = 1.2A1/3 fm, and the uncertainty (a factor of two) is
indicated by the shaded area. Symbols of triangle, square, and cross indicate the asymmetry
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This corresponds to

(5) J =
3

32.6

(
3

4π

)2

A0.69R4
0β

2 [MeV−1],

where R0 is given in the unit of fm. Figures 3(c) and 3(d) show the calculated MoI
divided by A2.02 as a function of the deformation parameter β. With the mixed-type
pairing, the calculated MoI scatter around the empirical line, and most of them are
within a factor of two. On the other hand, with the YSN functional, the empirical line
is entirely off the trend of the calculated MoI for α > 0.3. Therefore, E(2+1 ) can be low
in neutron-rich nuclei despite the B(E2) value is not high. A systematic measurement
of E(2+1 ) and B(E2) in neutron-rich nuclei deepens the understanding of the pairing in
nuclei and puts a constraint on the pairing density functional.

4. – Summary

I have performed systematic calculations of the MoI from the proton drip line to the
neutron drip line to see the roles of neutron excess in the collective rotational motion. To
describe neutron-rich nuclei where loosely bound neutrons and the continuum coupling
are necessary to consider, the cranked HFB equation is solved in the coordinate space.
The comparison with the available experimental data and other models shows that the
present model surprisingly well describes the ground-state MoI, namely the E(2+1 ) value,
for deformed nuclei with β > 0.1. By employing the pairing density functional con-
structed to describe the isospin dependence in neutron-rich nuclei, I have found that the
MoI can be greatly enhanced near the drip line, whereas the magnitude of deformation
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is not as strong as estimated by the empirical relation between the E(2+1 ) and B(E2)
values. A systematic measurement of E(2+1 ) and B(E2) in neutron-rich nuclei puts a
constraint on the density dependence of the pairing effective interaction.
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