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Summary. — In the generator coordinate method the wavefunctions are defined
with respect to reference states that can indicate different shapes and deformations,
which are examples of collective generator coordinates. In this work, we study the
collective wavefunctions of Yrast states up to the terminating state of 50Cr using a
recently introduced framework to calculate projected states of spins up to I = 14
based on effective Hamiltonians and a 5 dimensional collective coordinate space.

1. – Introduction

In multireference models the wavefunctions are defined with respect to different over-
lapping reference states. These methods have the advantage of considering strong cor-
relations non–perturbatively, hence provide a natural framework to describe phenomena
like deformations. Therefore, multireference methods are used both in nuclear physics
and in other fields. The generator coordinate method (GCM) is a multireference model
which generates references from collective generator coordinates, like axial deformation
and triaxiality β, γ, pairing strengths gp, gn and cranking frequency ω in the case of this
work [1]. GCM has been used to model nuclei for a variety of observables and use cases,
describing both light and heavy deformed nuclei with great precision [2, 3].

Recently, we have developed a method based on generator coordinates to calculate
the states of different nuclei from superheavy isotopes like 292Lv to the light 24Mg [1,4,5],
with extensions to odd particle transfer spectroscopy [6] and reaction models [7]. This
proceeding testifies the progress in representing the states related to this model using
collective wavefunctions and presents the ground state of 48−52Cr isotopes and the Yrast
states of 50Cr.
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2. – Method

The method used in this work based on GCM has been developed to compute states of
nuclei, including rotational states of deformed nuclei at high spin [1]. In order to use the
multireference GCM introduced above to calculate the states of heavy and superheavy
nuclei [4], is beneficial to consider an Hamiltonian which is based on operators that
depend only on two indexes (rank 2 tensors), constructing the two–body interaction
terms as separable in the product of these simpler operators. This operation is without
loss of generality, as in [8].

For the present work, the Hamiltonian is chosen as,

(1) Ĥ = Ĥ0 + ĤQ + ĤP ,

that is, H includes a spherical mean field H0 =
∑

i eia
†
iai + E0, and two separable

terms for pairing and a quadrupole interaction inducing deformation. The pairing is
the seniority pairing between time reversal states HP = −G

∑
ijkl PijPkla

†
ia

†
jakal, the

constant strength G is calculated according to the uniform spectra method [9]. The
HQ term is a quadrupole–quadrupole interaction defined as − 1

4χ
∑
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ij Q
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Q2μ
ik Q

2μ∗
jl ]a†ia

†
l akaj . The operators are taken from the modified quadrupole force of [10].

The strength parameter χ is adjusted to reproduce axially constrained calculations of
a Skyrme functional, in this case SLy4, defining the Sly4-H effective Hamiltonian for a
specific nucleus. This effective Hamiltonian reproduces binding energy and deformation
properties of energy density functional, without the shortcoming in terms of inconsisten-
cies when the functional is used as an interaction in beyond mean field calculations. For
more information cf. [1], and the comparison of Skyrme functionals in [5].

The reference states that are used as overcomplete basis to solve the effective Hamil-
tonian (1) are generated as the HFB vacua |Φ〉 with a variation constrained over a set of
generator coordinates {|Φ(β, γ, gn, gp, ω)〉} ≡ {|Φ(i)〉}. This choice accounts for the most
relevant collective degrees of freedom in the form of vibrations, rotations and pairing.

The GCM solution is finally obtained solving the Hill Wheeler equation, which takes
into account the non–zero overlap between the reference states, Hh = EOh, with h
the eigenvector of coefficients of the solutions, and the overlap matrix Oij = 〈Φ(i)|
PNPZP I

MK |Φ(j)〉, where PN , PZ , and P I
MK are the projection operators. The pro-

jection is necessary to enforce the final states are eigenstates of neutrons N , protons Z
numbers and total angular momentum I, despite that the reference states might not.

The solutions are then written as a sum of different projected reference states,
|ΨA

I (a)〉 =
∑

iK hA,a
IMK(i)PNPZP I

MK |Φ(i)〉, where the state a of angular momentum I
and particle number A is obtained summing over the reference states |Φ(i)〉. However,

the Hill-Wheeler coefficients hA,a
IMK(i) cannot be directly interpreted as amplitudes rela-

tive to a given collective coordinate i since the reference states are non–orthogonal. The
weights representing probabilities of the state being in a certain collective coordinate (i)
can be derived taking into consideration the overlap operator O as,

(2) g = O1/2h, that is, g(i) =
∑

j

O1/2(i, j)h(j),

where O1/2 is the square root of the Hermitian positive definite overlap matrix and g are
referred to as the collective weights of the collective wavefunction [11].
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Fig. 1. – Collective wavefunctions (2) of 48Cr, 50Cr, and 52Cr represented in the β, γ plane,
where β is the amount of deformation and γ is the axis of deformation with γ = 0 corresponding
to prolate shape. The coordinates of the reference states i are indicated on the landscape as
points, with more intense colors corresponding to higher values. The contour are obtained by
convoluting these points with Gaussians of σ = 0.02.

3. – Collective wavefunction of the Yrast line

We can now use eq. (2) to analyse the states of different isotopes and in particular the
lowest energy states of different angular momenta, called Yrast states. For this scope, the
isotopes of 48−52Cr are particularly interesting since they represent a transition between
the N = Z half-occupied f7/2 shell of

48Cr, that is often taken as an example of rotational
band structure [12], to neutron closed shell of 52Cr.

The calculations of these isotopes have been executed with the parameters in [1]. The
five dimensional collective landscape is constructed with a 192 points uniform sampling
of β, γ for those points in which the HFB energy is within 12 MeV of the minimum
point, while gn, gp and ω collective coordinates are randomly sampled. This sampling is
projected on one sixth of the β, γ plane to more clearly analyse the intrinsic shape of the
nucleus. In figs. 1 is shown the initial result for the representation of the wavefunctions
of the ground states of these nuclei. The corresponding spectra can be found in [1].

In fig. 2 is possible to appreciate how the collective wavefunction of 50Cr evolves along
the Yrast states from the ground state to the the terminating state. The terminating
state is the highest total spin that is possible to make by aligning the angular momenta
of all particles in the valence shell. In the case of 50Cr 4 protons and 6 neutrons can
align in the f7/2 shell, giving I = 14.

The ground state wavefunction of 50Cr shows some a distribution located around the
mien field minimum of β ≈ 0.2 and γ ≈ 0◦. Nevertheless it is interesting to follow the
development of the wavefunction as angular momentum is increased. At spins 2 ≤ I ≤ 6
the wavefunction is better represented by a deformed and rotating reference state and
therefore the collective wavefunction assumes a more definite prolate character. After
I = 8 the wavefunction starts reducing its deformation, distributing more widely across
references of different shapes. Finally, the terminating state at I = 14 that is well
described by a spherical reference states confirming the representation of the terminat-
ing state as particles aligned in the spherical shell to form the corresponding angular
momentum.

4. – Conclusions

The generator coordinate method can enable the detailed study of a variety of dif-
ferent phenomena and provides precise account of several physical degrees of freedom
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Fig. 2. – Collective wavefunctions (2) for the even angular momentum Yrast states in 50Cr from
I = 0 to I = 14, as in fig. 1.

that are relevant for the nuclear case. Among that, the study of detailed wavefunction
of rotational states. Using the collective wavefunction is possible to give an intuitive
representation of the nuclear wavefunction without sacrificing rigour in the treatment of
the nucleus as a many–body system.
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