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Spectra of N = Z nuclei in a formalism of quartets
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Summary. — We describe the spectra of even-even N = Z nuclei in a formalism
of quartets. Quartets are α-like four-body structures characterized by an isospin
T = 0. The structure of the quartets is fixed by resorting to the use of proper
intrinsic states. Various types of intrinsic states are introduced which generate
different sets of quartets for a given nucleus. Energy spectra are constructed via
configuration-interaction calculations in the spaces built with these quartets. Some
applications of this formalism are discussed for nuclei in the sd and pf shells. A
good description of the low-lying spectra of these nuclei is achieved.

1. – Introduction

The study of N = Z nuclei, i.e., nuclei with an equal number of neutrons and protons,
is an issue of great interest in contemporary nuclear structure physics. What makes
N = Z nuclei particularly interesting is the appearance of new types of correlations
induced by the proton-neutron (pn) pairing interaction. This interaction is expected to
play a relevant role in these nuclei owing to the fact that protons and neutrons share the
same orbitals [1].

Understanding the type of correlations induced by the pn pairing force in the wave
function of N = Z nuclei has proved to be a not trivial task. Following the seminal work
by Belyaev et al. [2], in most studies the ground state of a pn pairing Hamiltonian has
been described in the Hartree-Fock-Bogoliubov (HFB) approximation. However, this
approximation which does not conserve the particle number, the spin and the isospin
does not provide a sufficiently accurate description of the ground state of a pn pairing
Hamiltonian.

An unambiguous indication of the type of correlations that are generated by the pn
pairing in N = Z nuclei can be provided by the study of exactly solvable Hamiltonians.
In a recent work [3], we have derived the exact solutions of the isovector pairing and
evidenced a peculiar aspect of these solutions which had escaped previous investigations
[4, 5] We have shown on an analytic basis that what characterizes the eigenstates of an
isovector pairing Hamiltonian in N = Z systems is the occurrence of correlated α-like
structures (“quartets”).
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One needs to remark that, well before the exact treatment just discussed the essential
role played by four-body correlations in N = Z systems subject to an isovector pairing
force, but limited to the special case of degenerate single-particle levels (the so-called
SO(5) model), had already been emphasized in ref. [6]. More generally, quartets have
definitely a long history in nuclear structure physics [7-10], but their complexity has
undoubtedly represented a hindrance to the development of quartet models.

In a recent past, T = 0 quartets have been introduced to build an approximation
scheme for the ground state of the isovector pairing Hamiltonian [11]. This approach,
known as Quartet Condensation Model (QCM), assumes this ground state to be a con-
densate of T = 0 quartets, each quartet consisting of two collective isovector pairs coupled
to T = 0. The QCM approach has turned out to be very accurate both in the case of
deformed and spherical mean fields. In the latter case the quartets are also characterized
by an angular momentum J = 0 [12]. The QCM formalism has been later on extended
to a more general form of pn pairing which also included an isoscalar component [13-15]
as well as to quite general Hamiltonians [16].

The use of quartets has not been limited to the analysis of the ground state only. A
more elaborate quartet formalism, involving quartets other than the single J = 0, T = 0
one of the QCM approach, has been developed to describe the spectra of N = Z systems
[17-19]. In this approach, simply referred to as Quartet Model (QM), spectra (of both
positive and negative parity states) have been generated by carrying out configuration-
interaction calculations in a space of states formulated as products of collective T = 0
quartets of various J .

A crucial aspect of the QM approach consists in the definition of the quartets to involve
in the calculations. In the early applications of this quartet formalism we have adopted
the criterion of assuming as T = 0 quartets those defining the low-lying eigenstates
of the nearest T = 0 one-quartet systems [17-19]. While having the advantage of being
straightforward, this “static” definition of the quartets is clearly not the most appropriate
one since it fully neglects the effect of the Pauli principle on the amplitudes of the quartets
when two or more of these quartets have to coexist in the same nucleus. Finding the
most appropriate quartets to be employed in a QM calculation is a matter of primary
importance. The approach which will be illustrated in this contribution resorts to the use
of special quartet-based intrinsic states [20]. Quartets will result from the minimization
of these intrinsic states for each N = Z nucleus. In this sense, this approach provides
a “dynamical” definition of the quartets. Energy spectra will be then constructed via
configuration-interaction calculations in the spaces built with these quartets.

In sect. 2, we will describe our formalism. In sect. 3 we will show some applications
and, finally, in sect. 3, we will summarize the results and draw the conclusions.

2. – Formalism

We work in a spherically symmetric mean field and, using the standard notation, we
introduce the label i ≡ {ni, li, ji} to identify the orbital quantum numbers. We define
the T = 0 quartet creation operator as

(1) q+JM =
∑

i1j1J1

∑

i2j2J2

∑

T ′

qi1j1J1,i2j2J2,T ′ [[a+i1a
+
j1
]J1T

′
[a+i2a

+
j2
]J2T

′
]JT=0
M ,

where a+iτ creates either a proton or a neutron (depending on the isospin projection τ) on
the orbital i and M stands for the projection of J . No restrictions on the intermediate
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couplings J1T
′ and J2T

′ are introduced and the amplitudes qi1j1J1,i2j2J2,T ′ are supposed
to guarantee the normalization of the operator. We shall focus on systems of Nπ protons
and Nν neutrons such that Nπ = Nν and Nπ + Nν = 4n (n = 2, 3) and assume axially
symmetry of these systems.

In the representation spanned by the quartets (1) we construct a set of intrinsic states.
As a starting point, we introduce the “ground” intrinsic state

(2) |Θg〉 = Ng(Q
+
g )

n|0〉,

where by n is denoted the number of quartets which can be formed with the valence
nucleons outside the closed core, denoted by |0〉. As can be noticed, |Θg〉 is a condensate
of the intrinsic quartet Q+

g defined by

(3) Q+
g =

∑

J

α
(g)
J (q+g )J0,

where

(4) (q+g )J0 =
∑

i1j1J1

∑

i2j2J2

∑

T ′

q
(g)
i1j1J1,i2j2J2,T ′ [[a

+
i1
a+j1 ]

J1T
′
[a+i2a

+
j2
]J2T

′
]JT=0
0

In order to fixQ+
g , we minimize the energy of the state |Θg〉 with respect to the coefficients

q
(g)
i1j1J1,i2j2J2,T ′ and αg,J .
In addition to the ground intrinsic state, we introduce a family of “excited” intrinsic

states which are generated by promoting one of the quartets Q+
g of |Θg〉 to an excited

T = 0 configuration. These states have the general form

(5) |Θk〉 = NkQ
†
k(Q

†
g)

(n−1)|0〉,

with

(6) Q†
k =

∑

J

α
(k)
J (q†k)Jk,

(7) (q+k )Jk =
∑

i1j1J1

∑

i2j2J2

∑

T ′

q
(k)
i1j1J1,i2j2J2,T ′ [[a

+
i1
a+j1 ]

J1T
′
[a+i2a

+
j2
]J2T

′
]JT=0
k

Assuming that the quartet Q+
g has already been fixed, we construct the new quartet

Q+
k by minimizing the energy of |Θk〉 with respect to the coefficients q

(k)
i1j1J1,i2j2J2,T ′ and

α
(k)
J (under the constraint of orthogonality when various states with the same k are

involved). The states (5) will be identified with the value of the quantum number k and,
in particular, we shall refer to β and γ intrinsic states for k = 0 and 2, respectively. It can
be seen that these states, as well as the state (2), have an undefined angular momentum.

Once the quartets have been fixed, we generate the energy spectra by carrying out
configuration-interaction calculations. To this purpose we define the set of states (we
work in the m-scheme)

(8) |Ψ(n)

M
, {NJM}〉 =

∏

J∈(0,Jmax);M∈(−J,J)

(q+JM )NJM |0〉
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Fig. 1. – Spectra of 24Mg obtained by performing configuration-interaction calculations in spaces
built with various sets of T = 0 quartets (see text): (A), J = 0, 2, 4 static quartets from 20Ne;
(B), J = 0, 2, 4 dynamical quartets from the ground intrinsic state (2); (C), the same set as in
(B) plus J = 2, 3, 4 quartets from the γ intrinsic state ((5) for k = 2); (D), the same sets as in
(C) plus J = 0, 2, 4 quartets from the β intrinsic state ((5) for k = 0). SM, shell model results;
EXP, experimental spectrum. The numbers above the symbols (A)-(D) are the relative errors
in the ground state correlation energy with respect to the shell model value.

with the conditions

(9)
∑

JM

NJM = n,
∑

JM

MNJM = M.

We then orthonormalize the states (8) and diagonalize the Hamiltonian in this new basis
for the various M .

3. – Applications

Calculations have been carried out in the sd and pf shells by adopting the USDB [21]
and KB3G [22] interactions, respectively. The vacuum state |0〉 in the equations of sect.
2 stands for the nucleus 16O for sd shell nuclei and for 40Ca for pf shell nuclei.

In figs. 1, 2 and 3 we plot the spectra of 24Mg, 28Si and 48Cr, rispectively, generated
with various sets of quartets. The spectrum (A) of each figure has been obtained by
adopting static quartets, namely the quartets describing the lowest J=0,2,4 states of
20Ne for the sd shell nuclei and the lowest J=0,2,4,6 of 44Ti for 48Cr. In spite of the quite
good results for the ground state correlation energy (defined as the difference between
the ground state energies with and in absence of interaction) in all cases the spectra show
significant differences with respect to the shell model results. For the spectra (B) of the
same figures, instead, we have adopted the dynamical quartets with the same J ’s as the
previous ones, obtained from the minimization of the ground intrinsic states. In all three
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Fig. 2. – Spectra of 28Si obtained by performing configuration-interaction calculations in spaces
built with various sets of T = 0 quartets (see text): (A), J = 0, 2, 4 static quartets from 20Ne;
(B), J = 0, 2, 4 dynamical quartets from the ground intrinsic state (2); (C), the same set as in
(B) plus J = 0, 2, 4 quartets from the β intrinsic state ((5) for k = 0); (D), the same sets as
in (C) plus J = 3, 4 quartets from the k = 3 intrinsic state (5). SM, shell model results; EXP,
experimental spectrum. The numbers above the symbols (A)-(D) are the relative errors in the
ground state correlation energy with respect to the shell model value.

nuclei one observes a lowering of the yrast states J = 0, 2, 4, 6 forming the ground state
bands while most of the remaining states are pushed up in energy. The new ground state
bands are all closer in energy to the shell model ones and a considerable improvement
is observed also in the accuracy of the ground state correlation energies. Thus adopting
the quartets (q+g )J0 associated with |Θg〉 has had a positive effect only on the ground
state bands of the nuclei under study.

In the remaining spectra of the above figures we show the effect of introducing further
quartets generated from the excited intrinsic states (5) in the configuration interaction
calculations. In the following we shall examine this effect case by case. In 24Mg, fig.
1(B), one notices that a band formed by the Jk = 22, 31, 42, 51 states has been shifted
higher in energy when passing from static to dynamical quartets. By making use of
the definition of the γ intrinsic state ((5) for k = 2), we construct new quartets with
J = 2, 3, 4 and perform a configuration-interaction calculation that includes these new
quartets in addition to those already used for the calculation of fig. 1(B). The new
result is shown in fig. 1(C). We observe a clear lowering of the energies of the states
Jk = 22, 31, 42, 51 while the states of the ground state band have remained basically
unmodified with respect to those of column (B). The inclusion of the quartets derived
with the help of the γ intrinsic state has therefore essentially affected only those states
which can be associated to a γ band of 24Mg (and, in addition, the state 23). As a final
step, we have explored the effect on this spectrum of the inclusion of a set of quartets
with J = 0, 2, 4 built from the β intrinsic state ((5) for k = 0). The basic effect which



6 M. SAMBATARO

-32

-30

-28

-26

-24

E
 (

M
eV

)

1
10

1

4

0

4

2

6

2

4

Cr48

6

2

1

0.5%

2
1

1.4%
(B) SM

1

2

1

2

1

1

3

24 24

(A) (C) EXP
0.4%

43

23 0

2

2 2
4
3

4

2 3

1
3

02

(D)
0.4%

Fig. 3. – Spectra of 48Cr obtained by performing configuration-interaction calculations in spaces
built with various sets of T = 0 quartets (see text): (A), J = 0, 2, 4, 6 static quartets from 44Ti;
(B), J = 0, 2, 4, 6 dynamical quartets from the ground intrinsic state (2); (C), the same set as in
(B) plus J = 2, 3, 4 quartets from the γ intrinsic state ((5) for k = 2); (D), the same sets as in
(C) plus J = 0, 2, 4 quartets from the β intrinsic state ((5) for k = 0). SM, shell model results;
EXP, experimental spectrum. The numbers above the symbols (A)-(D) are the relative errors
in the ground state correlation energy with respect to the shell model value.

can be observed in fig. 1(D) is a lowering the states J = 02, 23 which can be associated
to a β band of 24Mg. As a result of the new diagonalization, also the 51 state is lowered
in energy. The final spectrum shows a good agreement with the shell model one.

For what concerns 28Si, what is most striking in the spectrum of fig. 2(B) is the
absence of a state 02 close to the state 41 as observed in both the shell model and the
experimental spectrum. By interpreting this state 02 as the head of a β band, as a next
step, we enlarge the model space by also including the quartets with J = 0, 2, 4 associated
with the β intrinsic state. The result of the new configuration calculation can be seen
in fig.2(C). The inclusion of the new quartets mostly affects the yrare J = 0, 2 states by
giving rise, in particular, to a surprising lowering of the 02 state which positions itself
immediately above the 41 state, where it is expected to be. In spite of the fact that a
reasonably good agreement with the shell model spectrum has already been achieved, we
perform an additional calculation which also includes the quartets (q†3)J3, with J = 3, 4,
associated with the k = 3 intrinsic state (5). As it can be seen in fig. 2(D), the new
calculation essentially lowers the energy of the 31 and 42 states and, in addition, that
of the 32 state. This new calculation further improves the quality of the QM spectrum
which compares well with the shell model one.

The last case under investigation, 48Cr, shares some analogies with the correspond-
ing one of 24Mg. Indeed one observes in fig. 3(B) that, also in this case, the states
22, 31, 42 have been shifted higher in energy when replacing the static quartets with the
corresponding dynamical ones associated with the ground intrinsic state. These states
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reminding those of a γ band, we proceed as for 24Mg by introducing the quartets as-
sociated with the γ intrinsic state, with J = 2, 3, 4. The new calculation, fig. 3(C),
leaves unaffected the states of the ground rotational band (as for 24Mg) while it lowers
significantly the states 22, 31, 42. The new calculation also leads to the appearance of
new states (23, 43, 02) in the highest part of the spectrum. These states have a correspon-
dence with the shell model ones but with a 02 still too high in energy. By interpreting
this state as a possible head of a β band and wishing to lower its energy, we perform a
final calculation which includes also the quartets with J = 0, 2, 4 associated with the β
intrinsic state. This calculation leads to a significant lowering of the 02 state (fig. 3(D))
which improves the agreement between exact and approximate spectra.

As a final comment, we like to remark that the high quality of the ground states
reached in these calculations, with errors in the correlation energies confined within the
0.4% (figs. 1, 2, 3) depends almost entirely on the low-J quartets of the ground intrinsic
state. Indeed, by performing configuration-interaction calculations which include only
the quartets (q+g )J with J = 0, 2 these errors remain confined within 0.7% for 24Mg and
28Si while, for 48Cr, one finds 1.6%. In the latter case, however, it is sufficient to add
the J=4 quartet to reduce this error to 0.6%. As already evident from the comparisons
between the columns (A) and (B) of the same figures, these errors increase considerably
if static quartets are used instead of the dynamical ones.

4. – Summary and conclusions

In this contribution we have provided a description of deformed N = Z nuclei in a
formalism of α-like quartets. Quartets have been constructed variationally by resort-
ing to the use of proper intrinsic states. Spectra have been obtained by carrying out
configuration-interaction calculations in spaces built with these quartets. For each nu-
cleus more sets of quartets have been used in correspondence with the various types
of intrinsic states introduced. The intriguing aspect of these calculations has been the
observation of band-like structures associated with the various sets of quartets. The
procedure has been applied to 24Mg, 28Si and 48Cr nuclei and it has provided a good
description of the low-lying spectra in all three cases. A merit of this description is
that of relying on only a few degrees of freedom. For what concerns the ground states,
in particular, we have shown that already the T = 0 quartets with J = 0 and J = 2
can guarantee an accurate approximation of these states. As a general conclusion, the
results achieved in this work promote the new method proposed for the definition of the
quartets as well as the use of the latter as basic structures for an effective description of
the ground and excited states of deformed N = Z nuclei.
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