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Summary. — Nuclear level densities play a key role in many nuclear applications.
To go beyond the usual particle-independent approximation, a conceptually new
approach based on the boson expansion of QRPA excitations is described. The
calculated nuclear level densities are shown to follow an energy dependence close
to a constant-temperature formula at energies above a few MeV, but present a
rather narrow spin distribution. A quite remarkable agreement is obtained with
experimental s-wave resonance spacings and Oslo data, at least for the 48 even-even
nuclei considered in the present study.

1. – Introduction

Nuclear level densities (NLDs) play a key role in the modelling of nuclear reactions,
hence in the evaluation of the nuclear data and in many nuclear applications. It has been
a field of research for years going back at least to 1936 with Bethe’s pioneering work [1].
Based on the corresponding Fermi Gas model, a large number of analytical formulas
have been proposed to describe not only the exponential increase of levels with excitation
energies, but also the impact of shell, pairing and collective effects (see, e.g., ref. [2] and
references therein). Such models mainly resort to phenomenological parameters adjusted
to scarce experimental data or deduced from systematics. Their predictions are expected
to be reliable for nuclei not too far from experimentally accessible regions and at energies
where experimental constraints exist, but are questionable, in particular, when dealing
with exotic nuclei. To face such difficulties, it is preferable to rely on as fundamental
(microscopic) as possible methods based on physically sound models.

Microscopic models of NLD have been developed (see, e.g., [3-9] and references
therein), but they are seldom used for practical applications due to (i) their lack of ac-
curacy in reproducing experimental data (especially when considered globally on a large
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data set), (ii) their restricted flexibility in comparison with highly parametrized analyt-
ical expressions, or (iii) their limitation when applied to the large set of nuclei needed
for applications. The combinatorial approach followed in refs. [3,4] clearly demonstrated
that such models can compete with the statistical ones in the global reproduction of
experimental data. This approach provides energy, spin and parity dependence of NLD,
and, at low energies, describes the non-statistical limit which, by definition cannot be
described by the traditional statistical formulas. Such a non-statistical behaviour can
have a significant impact on cross section predictions, particularly when calculating cross
sections known to be sensitive to spin or parity distributions such as for isomeric produc-
tion or low-energy neutron capture [10]. However, the combinatorial method also offers
room for improvement because of the phenomenological aspects of some ingredients it
contains as well as the fundamental assumption of independent particles it entails, as
all statistical approach also do: both aspects could hamper its microscopic nature, and
consequently its predictive power, especially at the lowest energies.

When considering publicly available global NLD models providing predictions for a
large number of nuclei, only a limited number of methods are available. These include one
of the many analytical forms of the Fermi Gas model (see, e.g., [2, 11]), the statistical
model based on mean-field single-particle scheme and pairing properties [12] and the
combinatorial approach [3,4]. Such a collection of NLD models is in particular available
in the TALYS reaction code [13]. All these models more or less reproduce equally well
the overall set of NLD experimental data that essentially consist of low-lying levels, s-
wave resonance spacings at the neutron separation energy [2] and the Oslo data [14,15].
They are all based on the independent-particle approximation, so that at energies below
a few MeV, they all fail to reproduce the detailed structure-dependent distribution of
low-lying levels, in particular the vibrational ones. More microscopic approaches, like
the shell model and its many variants, include correlations beyond mean-field theory but
their applications, even within the shell model Monte Carlo method [7,8], are restricted
to medium-mass nuclei and can hardly be extended to the thousands of nuclei of interest
in nuclear applications.

For this reason, a conceptually new approach beyond the independent-particle ap-
proximation and still tractable at large scale has been proposed [16]. This so-called
QRPA+BE method is based on the boson expansion of quasi-particle random phase ap-
proximation (QRPA) excitations. After describing the methodology, the energy, parity
and spin distributions of the newly estimated NLDs are compared with other global
models and available experimental data.

2. – The QRPA+BE method

Considering the underlying quasi-boson approximation, all QRPA states are boson
excitations acting on the QRPA vacuum. The latter can be built from the HFB ground
state with an exponential form of boson operators [17]. Such a QRPA formalism based on
axially-symmetric-deformed HFB equations solved in a finite harmonic oscillator basis
in cylindrical coordinates has been described in details in refs. [18-23]. This QRPA
method using the D1M Gogny force [24] has proven its capacity to predict the E1 and
M1 photon strength functions [21,25] as well as the Gamow-Teller response [23,26] with
a high degree of reliability. The QRPA method has also shown its capacity to reproduce
rather well low-lying vibrational levels [20, 25]. In the present study, the D1M+QRPA
approach is used to estimate all intrinsic states with angular momentum projection up
to Kmax = 9. For nuclei up to Z = 74, QRPA calculations are performed without
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any energy cutoff on the two-quasi-particle states energies. In contrast, to decrease the
computational time, for Z ≥ 76 nuclei, a cutoff energy εc = 120 MeV is applied for
practical consideration. Since for heavy systems like actinides, it remains computerwise
extremely heavy to consider large basis dimension and large cutoff energies of the two-
quasi-particle states, nuclei with Z > 82 are not considered at this stage. Despite such a
large cutoff, spurious states are known to appear for specific Kπ blocks and need to be
omitted, as described in ref. [16].

To go beyond the QRPA excitations, the intrinsic level density, including vibra-
tional states, can be derived using a generalised boson partition function, as detailed
in refs. [16, 27]. The present approach is conceptually different from the previous works
the combinatorial approach [3, 27, 28], since there is no need to perform here any con-
volution with incoherent particle-hole excitations, those being implicitly included in the
QRPA phonons.

QRPA excitation energies with D1M or D1S interactions tend to be overestimated
(see fig. 1 of ref. [25]) by typically 100-200 keV. For this reason, all QRPAKπ energies are
lowered by 150 keV before applying the boson expansion. Similarly, the D1M interaction
is known to give rather strong shell effects due to its low effective mass leading to a
systematic overestimate of QRPA excitations for closed shell nuclei. In particular, we
find the first 208Pb 2+ and 3− levels to be overestimated by typically 0.6 MeV. For this
reason, a constant energy shift of -0.65 MeV is applied to all Kπ components for nuclei
with Z, N or N + 2 corresponding to magic numbers.

Finally, the QRPA+BE NLD is obtained for spherical nuclei from the state density
in the laboratory frame ωtot(U,M = J, π) through

(1) ρs(U, J, π) = ωtot(U,M = J, π)− ωtot(U,M = J + 1, π) .

For deformed nuclei, the NLD is derived by including rotational bands on top of each
band head through the usual expression [28]

ρd(U, J, π) =
1

2

[ J∑
K=−J,K �=0

ωtot(U − EJ,K
rot ,K, π)

]

+ωtot(U−EJ,0
rot, 0, π)

[
δ(J even) δ(π=+) + δ(J odd) δ(π=−)

]
.(2)

where, the symbol δ(x) (defined by δ(x) = 1 if x holds true and 0 otherwise) restricts the
rotational bands built on intrinsic states with spin projection K = 0 and parity π to the
levels sequences 0, 2, 4, ... for π = + and 1, 3, 5, ... for π = −. The rotational energy is
obtained with the well-known expression [29],

(3) EJ,K
rot =

J(J + 1)−K2

2J⊥
,

where J⊥ is the Belyaev moment of inertia of a nucleus rotating around an axis per-
pendicular to the symmetry axis, as determined within the HFB approach with D1M
effective interaction. The Belyaev moment of inertia is typically about 30% lower than
the experimental one and is consequently systematically increased by 30% in the present
calculations.
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Finally, it is well known that there is a sharp transition appearing when selecting
either eq. (1) or (2) (i.e., if a nucleus is spherical or deformed). Both spherical and
well-deformed nuclei can be properly described in the present framework. However, it
fails to describe intermediate cases for which an exact projection technique should be
included. For this reason, to smooth out the difficult cases of transitional deformation,
a phenomenological damping function F is introduced [3, 28] such that

(4) ρ(U, J, π) =
[
1−F

]
ρs(U, J, π) + Fρd(U, J, π).

We consider, as in ref. [4], an expression depending on the quadrupole deformation
parameter β2 only which reads

(5) F = 1−
[
1 + e(β2 − 0.18)/0.04

]−1

,

where the parameters have been adjusted in order to reproduce at best the measured
s-wave mean spacings.

3. – The QRPA+BE level densities

The energy dependence of the QRPA+BE total NLD is compared in fig. 1 for the
deformed 170Yb nucleus with 5 alternative and widely used NLD models. Above a few
MeV, the QRPA+BE NLD is seen to follow an energy dependence rather similar to the
constant-temperature formula. Deviations from a simple exponential law are however
found at low energies and depict the complex nuclear structure properties. As shown in
ref. [16], the equiparity is achieved at an excitation energy in the QRPA+BE case higher
than in the particle-independent combinatorial approach. The spin distribution of the
QRPA+BE NLD is also illustrated in fig. 1 for 170Yb and compared with predictions
by the same alternative models. Significantly narrower spin distributions are obtained
with the QRPA+BE NLDs with a spin cutoff factor close to 3-4 at energies around the
separation energy. Such a low spin cutoff parameter (σ = 2.9 ± 0.2) was extracted for
example by (p,p′) experiment on 150Nd isotope at this energy [30]. Although the narrow
spin distribution experimentally deduced though the side-feeding method was interpreted
as resulting from the specific reaction mechanism inefficiently populating all spins at such
an energy, the QRPA+BE prediction suggests that such a narrow spin distribution may
actually correspond to the intrinsic one expected at this energy.

The QRPA+BE s-wave spacings for 48 even-even nuclei are compared in fig. 3 with
experimental data [2]. An overall excellent agreement by a factor frms = 1.65 is obtained,
showing the relevance of the newly proposed QRPA+BE approach to reproduce experi-
mental data in the wide range of 74 ≤ A ≤ 209 globally within a factor of 2 and of no
more than a factor of 3.8. This level of accuracy is similar to (or even better than) the
one found by the most successful global NLD models [2]. In particular, on the same set of
D0 values, frms = 1.5 and 2.4 for the Cst-T and HFB+comb models, respectively. Note
that the energy shift applied to the QRPA energies by −0.15 MeV typically reduces the
NLD by a factor of 2 and the −0.65 MeV shift for closed-shell nuclei by a factor between
5 and 25, as shown in fig. 3. This simulation also shows how important it is to accu-
rately estimate in particular the lowest QRPA energies. For this reason, this approach to
NLD also represents a stringent test of the interaction used in the QRPA calculation. In
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Fig. 1. – (Color online) Comparison, for 170Yb, between QRPA+BE total NLDs (left panel)
and normalised spin distribution at 8 MeV (right panel) and 5 widely used model predictions,
namely the HFB plus combinatorial (HFB+comb) [3], the temperature-HFB plus combinatorial
(THFB+comb) [4], the constant temperature (Cst-T) [11], the Back-Shifted Fermi Gas (BSFG)
[11] and the HFBCS plus statistical model (HFBCS+Stat) [12] models.

particular an overestimation of the QRPA energies, for both D1S or D1M interactions,
leads to an underestimate of the NLD after the boson expansion.

The energy distribution of the QRPA+BE NLD is finally compared with Oslo mea-
surements in fig. 4 for 172Yb using the same procedure as in ref. [15], i.e., the theoretical
NLD formula is adjusted through a scaling factor and an energy shift to reproduce at
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Fig. 2. – (Color online) Comparison between QRPA+BE and HFB+comb normalised spin dis-
tribution of 150Nd at U = 6 MeV as a function of the spin J (in �). Also included is the
spin distribution extracted by the side-feeding method [30] leading to an estimated spin cutoff
parameter σ = 2.9± 0.2.
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Fig. 3. – (Color online) Ratio of QRPA+BE (Dth) to the experimental (Dexp) [2] s-wave neutron
resonance spacings for 48 even-even compound nuclei. The blue diamonds are obtained without
including any energy shift to the QRPA excitation energies. The red squares correspond to
the final results when including a -0.15 MeV shift to all excitation energies except to the semi-
magic nuclei for which a shift of -0.65 MeV is applied. The red error bars correspond to the
experimental uncertainties.

best the experimental s-wave spacing and the Oslo data are normalised to the theoretical
NLD at the highest measured energies. Both QRPA+BE and HFB+comb NLDs are
seen to be in good agreement with data, but only QRPA+BE predictions agree at the
lowest energies. The impact of these NLD models on the 171Yb(n,γ)172Yb cross sections
is shown in fig. 4 where a better agreement is found with the QRPA+BE NLDs. More
comparisons between QRPA+BE and Oslo NLDs can be found in ref. [15].

4. – Conclusions

To go beyond the usual particle-independent approximation, a new approach based on
the boson expansion of QRPA excitations has been proposed [16]. The calculated NLDs
are shown to follow an energy dependence close to a constant-temperature formula at
energies above a few MeV, but present a spin distribution that is rather narrower than
what is predicted by other models. The NLDs are also found to achieve equiparity at
energies higher than what is obtained within the combinatorial approach. For the 48
even-even nuclei below Pb for which experimental s-wave spacings are available, a quite
remarkable agreement with s-wave resonance spacings is found, provided the QRPA
excitation are globally shifted down. Excellent agreement with Oslo data is also found,
highlighting the relevance of the present approach.

The QRPA+BE approach is restricted at the present time to even-even systems but
will be in the future extended to nuclei with an odd number of nucleons. Since these
systems breaks the time-reversal symmetry but also the boson nature of the QRPA ex-
citations, they should be treated with special care. Similarly, a special attention will be
given to nuclei heavier than Pb for which some truncations may need to be imposed to
the QRPA calculation to remain tractable. While a long-term goal will be to improve
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Fig. 4. – (Color online) Left panel: Theoretical and renormalised Oslo NLDs for 172Yb. The solid
line represents the NLD extracted from known discrete levels on an energy bin ΔE = 0.5 MeV.
The solid circles correspond to the Oslo data [14] and the solid lines to the present QRPA+BE
NLD predictions. The full square at U = Sn corresponds to the total level density extracted
for the QRPA+BE NLD model after renormalisation on the experimental D0 value. Right
panel: Comparison between experimental and theoretical 171Yb(n,γ)172Yb cross sections when
using either the QRPA+BE or HFB+comb NLDs shown in the right panel. Experimental cross
sections [31-34] are given by black symbols.

the interaction to accurately describe the QRPA excitations, some refined systematics
regarding their energy renormalisation can provide in the mean time a phenomenologi-
cal approach that can further increase the accuracy of NLD predictions. A large-scale
calculation of QRPA+BE NLD for applications is foreseen in the future.
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