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Summary. — Many-body correlations characterizing the Constrained Molecular
Dynamics (CoMD)are analysed in the case of finite and zero range effective micro-
scopic interactions. This work illustrates the case of infinite nuclear matter at zero
temperature. A comparison with the predictions in the mean-field (MF) limit corre-
sponding to different effective masses, highlights non-negligible differences regarding
the produced Equation of State (EoS).

1. – Introduction

The description of many-body systems is one of the most difficult problems in nuclear
physics due to their complexity being quantum objects described by a large number of
degrees of freedom. In particular, the heavy ion collisions (HIC) at energy well above
the mutual Coulomb barriers are usually described through semi-classical approaches
based on the mean-field (MF) approximation or quantum molecular dynamics approaches
(QMD) [1]. These last describe the single particle wave functions by means of well
localized wave-packets (WPs) with fixed widths. In this way many-body correlations are
produced which lead to the spontaneous formation of clusters. In these semi-classical
approaches the effective interaction plays obviously a key role, and in many cases it just
represents the main subject of investigation. In several cases MF and molecular dynamics
approaches [1] share the same microscopic effective interactions. From a general point
of view, it can be expected that the typical and explicit two or many-body correlations
of QMD like approaches could instead play a role in many-body quantities as for the
total energy. In these cases, therefore, it would be desirable to investigate at what
extent these specific correlations may affect the many-body functional (EDF) related to
the total energy in the case of infinite nuclear matter(NM). In particular, by using the
CoMD model [2],in this contribution it is illustrated a study performed for a finite range
(FR) interaction trying to produce a ground state Equation of State (EoS) with common
accepted behaviours at the saturation density.
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2. – The microscopic effective interaction

In the following we will refer to an example of EoS characterized by some properties
at zero temperature that we choose as reference. Equilibrium density ρ0 = 0.165 fm−3,
associated binding energy E(ρ0) = −16 MeV, incompressibility K(ρ0) = 240 MeV, sym-
metry energy Esym = 30 MeV, an effective pairing energy (it include the spin dependent
produced trough the exchange terms [3]) equal to -2 MeV per nucleon at the saturation
density in finite systems (around mass 100). Moreover, the functional will correspond in
the MF limit to a relative effective mass m∗

r = 0.67, and neutron-proton effective mass
splitting m∗

rn −m∗
rp = 0.4β. Finally, different values of the slope parameter associated

to the symmetry energy L = 3ρ0(
dEsym

dρ )ρ0
have been considered changing in the range

55÷ 105 MeV as suggested from different investigations (see as an example [4]).
We now proceed in fixing the structure of the effective microscopic interaction starting

from which the energy functional of the density can be obtained according to the chosen
models.

The microscopic effective interaction in the original formulation of the CoMD
model [2] was a simple zero range interaction of the Skyrme type. We used a 2-body plus
a 3-body interaction. A third term describes the iso-vectorial interaction. the effects
related to the finite range interaction in MF and QMD-like approaches. The total micro-
scopic interaction, inspired from the Gogny interaction, will be the sum of the following
contributions (dr = r− r’).

V (dr) = [P2 + 2P3(
ρ

ρ0
)σ−1]e−(dr)2/μ2

(1a)

V0(dr) =
1

ρ0
[P20 +

2P30

σ + 1
(
ρ

ρ0
)(σ−1)δ(dr)(1b)

V sy(dr) = [P4(
ρ

ρ0
)(γ−1)(2δτ−τ ′ − 1)]e−(dr)2/μ2

(1c)

V sy
0 (dr) =

1

ρ0
P40(

ρ

ρ0
)(γ−1)(2δτ−τ ′ − 1)δ(dr)(1d)

VS(dr) =
1

ρ0
Pπ(

ρ

ρ0
)(γ−1)δs+s′δτ−τ ′δ(dr)(1e)

τ and s indicate the third components of the nucleon iso-spin and spin quantum numbers
respectively. The contributions in eq. (1a) and eq. (1c) represent a generalization of
the terms reported in [2] associated to the two, three-body and iso-vectorial interactions.
In analogy with the Gogny interaction, we have substituted the delta functions in the
spatial relative coordinates with a Gaussian whose width defines the only range μ = 1.1
fm that is used in this representation.

Always in analogy to the Gogny interaction and after different attempts to satisfy
the different requests of the reference energy density functional, it has been necessary to
add residual ZR terms associated to the two, three-body and iso-vectorial contributions
as shown in eq. (1b) and eq. (1d). Finally eq. (1e) represents a zero range spin-spin
interaction. This contribution is necessary to reproduce an effective ”pairing” energy of
about -2 MeV at the ground state for finite system with mass around 100. At the same
time, this further contribution is able to locally produce in box calculations (see next
section) small value of average total spin at the stationary conditions. The introduction
of this term produce a further contribution to the symmetry energy.
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3. – The effective interaction

Starting from the above expressions concerning the microscopic interaction the ex-
pression of the effective interaction as a function of the density can be obtained in the
MF approximation by evaluating the associated matrix elements using 2-body wave func-
tions constructed with plane-waves in a large volume V. Φ = 1√

V
eikr. The zero range

interactions will give arise to the usual terms proportional to powers of the density. The
finite range interaction will give arise to a momentum dependent part because of the
underlying Slater determinant structure of the 2-body wave function for the identical
particles. Details on the obtained complete expression can be found in ref. [3]. In the
following as an example we write the two-body exchange contribution

ΔEex
2 (ki,kj) = −P2

V
(
√
πμ)3e−μ2(ki−kj)

2/4(2a)

The non-locality of the effective interactions produces corrective factors to the in medium
nucleon kinetic energy formally represented through a density dependent nucleon effective
mass m∗.

In the case of the CoMD model the first step is just to substitute the plane-waves

convolution with the wave packets Φ = 1
(2πσ2

r)
3/4 e

− (r−r0,i)
2

4σ2
r

+ik0,ir
. As an example, the

momentum dependent (MDI) 2-body contribution corresponding to eq. (2a) will be:

Ei,j,MDI
2 = − P2

8σ3
r

ξ3 × e
− 1

4 [
(r0,i−r0,j)

2

σ2
r

+ξ2(k1−k1)
2]
(δτi−τjδsi−sj )(3a)

With a modified width : 1
ξ2 = 1

4σ2
r
+ 1

μ2 . While the gausssian width of the related direct

contribution will be: λ2 = 4σ2
r + μ2.

In the framework of the MF approximation, all the quantities characterizing the
reference functional can be obtained in a relatively simple way by solving a linear system
with the strength parameters as unknown quantities. For the example chosen here, the
values of these quantities and the obtained interaction parameters are reported in the
first row of table 1. Finally, in the upper panels of fig. 1(a) it is shown for the reference
case the total energy as a function of the relative density ρr = ρ

ρ0
and in the bottom

panels the related symmetry energies. The results are plotted by means of a blue line.
To highlight the correlations produced by the CoMDmodel it will be instead necessary

to simulate the NM by performing box calculations. In this work we adopt periodic
boundary conditions. Results of this calculations will be shown in sect. 5.

4. – Source of many-body correlations in phase-space

With reference to the MDI interaction, it can be shown [3] that contrary to the CoMD
case, the usage of plane waves in the MF approaches produces an internal averaging on
the spatial part of the interaction. This gives arise to a correction with respect to the
CoMD energy per nucleon ΔEb that can be expressed as ( [3]):

EMD = EMF +ΔEb(4a)

ΔEb = −P2A

2
(δAi,j ∗BMF,2 + δBi,j ∗AMF,2 + δAi,jδBi,j)(4b)



4 M. PAPA

Table I. – For the chosen example, in the first row we report the parameters values characterizing
the adopted effective interaction in the MF approximation. The units of the P and L parameters
are MeV. The set corresponds to relative effective masses m∗

r and m∗
nr −m∗

pr equal to 0.67 and
0.4β. The second row show the new set of parameter values(see the text)

P2 P3 P20 P30 Pπ P40 P4 L σ γ

1042.8 -434.1 -870.0 169.9 -213.4 478.1 -300.0 63.3 0.9 0.7
1776.8 -1279.6 -1503.1 920.8 -171.4 551.1 -425.6 67.5 0.7 0.9

with: δAMD,2
i,j = AMD,2

i,j − AMF,2; δBMD,2
i,j = BMD,2

i,j − BMF,2; The Ai,j and Bi,j

are the 2-body matrix elements of functional associated to the spatial and phase-space
coordinates respectively (see eqs. (1a)-(3a)). The double overline symbols indicate the
average per pairs of nucleons. Beyond the effects due to the many-body dynamics the first
two contributions in eq. (4b) can be largely affected by the convolution operation with
the Gaussian associated to the WPs (differences in the widths of the overlap integrals
with respect to the MF case). The last term contains the dynamical correlation between
the ”fluctuations” in phase-space associated to the functional Ai,j(r, r’) and Bi,j(k,k’)
with respect to the mean value related to the MF approache.

Furthermore, more generally, we have to observe that another source of correlations
able to produce a ΔEb different from zero is obtained whenever a microscopic interaction
(also for zero range) acts in a different way, for example with opposite signs, on two
different subsets of nucleon pairs. In this case the interaction can affect on average
the overlap integrals related to the two subsets (i.e., can affect the relative distances
between the nucleons belonging to the different kinds of pairs) modifying the related
energies. This pure two-body effect, cannot be achieved in the MF case just due to
the one-body internal average generated by the use of plane-wave. An example of these
correlations was studied in [2]. This was the case of the iso-vectorial interaction coupled
with the Pauli constraint affecting in different way nn and pp pairs with respect to the
np ones. This kind of short range correlations can be interpreted as a tendency to form
deuteron-like particles (or more generally clusters) also at density around the saturation
one.

5. – Box calculations with CoMD model

The CoMD effective interaction that is a functional of the wave-packed centroids
has been evaluated in box calculations with periodic boundary conditions to simulate
the ”ground state” NM. In this stage the set of MF strength parameters reported on
the first row of table 1 was used. The calculations have been performed for different
densities (number of particles in the unitary volume) and β values using 2000 WPs . The
evolution of the WP’s centroids was applied for each configuration following the CoMD
approach [2]. For density lower than 0.8ρ0 the WPs coordinates were not evolved in time.
Because the increasing of fluctuations destroy the homogeneity-uniformity conditions,
which are reflected in the static MF expression. The results obtained for the total
energy is the average on the four independent microscopic configurations. The small
spread around the average determine the error. In the upper panel of fig. 1(a), for the
charge/mass symmetric NM, are shown with open symbols the obtained results from
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Fig. 1. – (a) According to the legend and to the text, upper panel: The total energy Eb as a
function of the density evaluated for the different cases, bottom panel: same as the upper one
but referring to the symmetry energy Easy. (b) In the upper panel the Pauli-over-blocking FP

is plotted as a function of the time step ts(see text). The box calculations are performed at the
saturation density with an effective interaction corresponding to the parameters reported in the
first row of table I. In the bottom panel the corresponding Eb per nucleon is plotted.

CoMD calculations concerning the total energy as a function of the relative density ρr
for the chosen case. The error for each determination is within the symbol size. The blue
solid lines represent instead the values obtained from the MF prediction which accurately
reproduce the chosen characterizing EDF reference properties reported at the beginning
of sect. 2.

6. – Discussion of the obtained results

For the case already reported in fig. (1a), in fig. (1b) (upper panel) we plot at
the saturation density ρ0, the average Pauli over-blocking FP = f − fm as function
of the number of steps Ns that define the variable ts = 0.25 ∗ Ns. In this stage the
coordinates are not evolved in time but only the numerical procedure related to the
constraint is applied. fm � 1.03 is a bias related the occupation numbers produced by
the finite efficiency e numerical of the Pauli constraint procedure. In the bottom panel
the corresponding value of the total energy is plotted. We see that already for ts = 0
the energy is larger than the expected value of -16 MeV as already shown in fig. 1(a).
This is due to the convolution with the WPs in the evaluation of the effective interaction.
Moreover as a function of ts, the energy still increases up to a level of about 1.5 MeV in
a correlated way with the reduction of FP . This further increment of the total energy
may be considered as a configuration energy associated to the correlation in phase space
induced by the Pauli constraint. In fact, in the analyzed case, the total potential energy
arising from the finite range interaction is negative, and the CoMD constraint tends to
minimize the number of pairs of identical nucleons which are near in phase space where
this negative MDI term is more effective.
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The illustrated calculations have been performed for different densities and charge-
mass asymmetries. The average overlaps integral related to the local and non-local
interactions have been fitted with sixth order polynomials of the density and for each
density with fourth order polynomials of the charge asymmetry parameter β. It’s worth
noting that the average overlap integrals, as evaluated from the described procedure in
the previous section contain all the main correlations effects associated to the CoMD
phase-space constraints related to the ”ground state” configurations.

With this new functional of the density, it has been possible to define a linear system
in the new parameters by imposing the usual condition already expressed in sect. 2
concerning symmetric and asymmetric NM ground state properties. The second row
of table 1 contains the new set of obtained parameter values for the case evaluated in
this work. Their uncertainty is of the order on ±3%. The value of the total energy is
plotted in fig. 1(a) with black circles for the γ = 0.7 case. The overall agreement wiht
the reference case is satisfactory for density around an beyond the saturation one. To
improve the agreement at lower density other free parameters should be introduced.

7. – Summary and final remarks

Many-body correlations developed in the constrained Molecular Dynamics, have been
described in the present work. The analysis proceeded by taking as reference a nuclear
matter density functional at zero temperature having commonly accepted properties
around the saturation density.

This correlations are evidenced by performing a comparison between the results ob-
tained through the CoMD model using the same effective interaction as the one deduced
in the MF approximation.

In the case of a finite range interaction or a MDI the comparison highlights large
differences between the reference density functional and the CoMD one. The latter
in fact produces different saturation density, binding energy, etc. The sources of the
correlations producing such differences have been discussed. They arise from the wave-
packed dynamics and from the constraint associated to the Pauli principle. A procedure
has been described to modify the values of the strength parameters in such a way to
obtain the reference EoS properties also in the CoMD case. It’s also worth noting that
the rather general feature of the discussed correlations could give a wider meaning to
the relative changes obtained in the comparisons between the different studied cases. An
example of the effects of these correlations on observables commonly studied in HIC is
presented in [3]
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