
DOI 10.1393/ncc/i2024-24053-8

Colloquia: COMEX7

IL NUOVO CIMENTO 47 C (2024) 53

Temperature evolution of the nucleon effective mass
and symmetry energy coefficient in the 68–78Ni isotopic chain

H. Wibowo(1)(∗) and E. Litvinova(2)(3)

(1) School of Physics, Engineering and Technology, University of York - Heslington, York YO10
5DD, UK

(2) Department of Physics, Western Michigan University - Kalamazoo, MI 49008, USA
(3) National Superconducting Cyclotron Laboratory, Michigan State University - East Lansing,

MI 48824, USA

received 31 October 2023

Summary. — The effective mass is an essential characteristic of nuclear matter
and finite nuclei. The temperature evolution of the effective mass plays a signifi-
cant role in understanding the temperature evolution of the symmetry coefficient of
the nuclear equation of state. In the present contribution, the single-(quasi)particle
spectra for 68–78Ni isotopes at zero and finite temperature are obtained by solv-
ing the Dyson equation in the basis of Dirac spinors. While the static part of the
self-energy of the Dyson equation has its origin from a self-consistent mean field gen-
erated by the effective mesons, the dynamical part takes into account the coupling
between (quasi)particles and phonons. In the leading approximation beyond the
mean field, the (quasi)particle-vibration coupling (qPVC) mechanism is responsible
for the fragmentation of single-(quasi)particle spectra. The calculated spectra of
nickel isotopes yield the temperature-dependent effective mass for the 0 to 2 MeV
temperature interval, which is relevant for astrophysical modeling, such as core-
collapse supernova simulations. The impact of the temperature dependence of the
effective mass on the symmetry coefficient in the nickel isotopic chain is discussed.

1. – Introduction

Understanding the behavior of atomic nuclei and nuclear matter at finite temperature
plays a key role in the astrophysical modeling, in particular, the r-process nucleosynthesis
and core-collapse supernovae (CCSN) simulations. The key nuclear physics input for the
r-process modeling are masses, beta-decay half-lives, and neutron capture rates [1]. For
the CCSN, the electron capture rates and the equation of state parameters are mostly
needed. The evolution of the nuclear shell structure with temperature underlies all the
astrophysically relevant nuclear structure properties, in particular, nuclear level density,
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nucleon effective mass, and the symmetry energy [2], which are crucial for both the
r-process and CCSN.

2. – Solution of Dyson equation at finite temperature

In the nuclear systems at finite temperature T , the motion of a nucleon through the
heated correlated medium is governed by the Matsubara propagator defined as a thermal
average [3]

(1) Gk1k1′ (τ1 − τ1′) = −〈Tτ ψ̂k1
(τ1)ψ̂

†
k1′

(τ1′)〉,

where Tτ is the imaginary time, τ , ordering operator and ψ̂k1
(τ1) ≡ eĤτ1 ψ̂k1

e−Ĥτ1 ,

ψ̂†
k1
(τ1) ≡ eĤτ1 ψ̂†

k1
e−Ĥτ1 represent the nucleonic field operators in the Wick-rotated

picture. Here, Ĥ = Ĥ − μN̂ , where Ĥ is the many-body Hamiltonian, μ is the chemical
potential, and N̂ is the particle number operator. The spectral representation of the
correlated propagator (1), defined by

(2) Gk1k2
(ε�) =

∫ 1/T

0

dτeiε�τGk1k2
(τ), τ = τ1 − τ2, ε� = (2�+ 1)T,

satisfies the finite-temperature Dyson equation

(3) Gk1k2
(ε�) = G̃k1k2

(ε�) +
∑
k3k4

G̃k1k3
(ε�)Σ

e
k3k4

(ε�)Gk4k2
(ε�).

The thermal mean-field propagator G̃k1k2
(ε�) is diagonal, viz., G̃k1k2

(ε�) = δk1k2
G̃k1

(ε�),

where G̃k1
(ε�) = [iε� − εk1

+ μ]
−1

. The single-particle states k and energies εk are ob-
tained by solving a set of thermal relativistic mean-field equation, which describes the
independent motion of Dirac nucleons inside a self-consistent field generated by an ef-
fective meson-nucleon interaction at T > 0 [7, 8]. The dynamical kernel Σe is approx-
imated by the (quasi)particle-vibration coupling ((q)PVC) model, which describes the
coupling between (quasi)particles and phonons [8, 9]. The phonon energies and vertices
are obtained by solving the finite-temperature relativistic (quasiparticle) random phase
approximation equations. In the present work, we use NL3 forces [4] and take into ac-
count the pairing correlations at T = 0 in the framework of Bardeen-Cooper-Schrieffer
(BCS) approximation [5].

In the diagonal approximation, Σe
k1k2

(ε) = δk1k2
Σe

k1
(ε) and eq. (3) can be recast into

(4) [ε− εk + μ− Σe
k(ε)]Gk(ε) = 1

for each state k. For each mean-field states k, the zeros of the function f(ε) = ε−εk+μ−
Σe

k(ε) correspond to the energy fragments ε
(λ)
k with λ = 1, 2, .... The appearance of the

energy fragments ε
(λ)
k indicates that the qPVC mechanism induces the fragmentation of

the single-particle mean-field states k. For each energy fragment ε
(λ)
k , the spectroscopic

factor S
(λ)
k is determined by

(5) S
(λ)
k =

[
1− d

dε
Σe

k(ε)

]−1

ε=ε
(λ)
k

, where
∑
k

S
(λ)
k = 1 and

∑
k

ε
(λ)
k S

(λ)
k = εk.
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3. – Temperature evolution of nucleon effective mass

The temperature-dependent nucleon effective mass m∗(T ) is defined by the relation
m∗(T )/M = (m̃/M)× (mω(T )/M), where M , m̃, and mω(T ) stand for the bare nucleon
mass, k mass, and ω mass, respectively [2, 6]. For the NL3 parametrization [4], the
value of k mass is 0.6M with M = 939 MeV. While the k mass is nearly temperature-
independent, the ω mass accounts for qPVC and finite temperature effects. To determine
the value of mω(T ) for each temperature T , we perform the following procedures [9]:

1) For each temperature T and single-particle state k = {(k),mk}, we determine the
quantity m(k)(E, T )/M as a function of excitation energy E:

(6)
m(k)(E, T )

M
= 1− ∂

∂ε
ReΣe

(k)(ε), ε = E + iΔ.

2) For each temperature T , the ω mass is calculated as the maximal value of
m(k)(E, T )/M averaged over the single-particle states k:

(7)
mω(T )

M
= maxE

⎡
⎣
∑

(k)(2j(k) + 1)
(
m(k)(E, T )/M

) (
1/v2(k)

)
∑

(k)(2j(k) + 1)

⎤
⎦ ,

where v2(k) is the BCS occupation probability.

3) The temperature dependence of the ω mass is parametrized according to the re-
lation mω(T )/M = 1 + {(mω(T = 0)/M)− 1} exp{−T/T0}, where mω(T = 0)/M
and T0 are the fitting parameters [2]. The best values of these parameters are
summarized in table III of ref. [9].

4. – Temperature evolution of symmetry coefficient

The symmetry energy term in the nuclear equation of state (EOS) is defined as ES =

S(T = 0) [1− (2Z/A)]
2
, where S(T = 0) stands for the symmetry coefficient of the

nuclear matter at T = 0. The symmetry coefficient S(T ) at finite temperature takes the
form:

(8) S(T ) = S(T = 0) +
�
2c2k2F
6M

[
M

m∗(T )
− M

m∗(T = 0)

]
.

For the NL3 parametrization [4], S(T = 0) = 37.4 MeV and the nuclear matter density
ρ0 = 0.148 fm−3. Since the value of S(T = 0) implicitly contains the contribution from
the qPVC and pairing contributions at T = 0, the subtraction term in the bracket aims
to overcome the double counting. The corresponding Fermi momentum kF is determined

via kF =
(
3
2π

2ρ0
)1/3

. The average values of mω(T = 0)/M and T0 over five Ni isotopes
(A = 68− 76) are mω(T = 0)/M = 1.39 and T0 = 1.48 MeV, respectively. The obtained
values of the effective mass m∗(T ) and the symmetry coefficient S(T ) for 0 ≤ T ≤ 2 MeV
are plotted in fig. 1(a). It demonstrates a significant increase of the symmetry coefficient
with temperature while the effective mass decreases considerably. Figure 1(b) shows the
evolution of the symmetry coefficients across the Ni isotopic chain, which are associated
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Fig. 1. – (a) The evolution of the total effective mass m∗/M and the symmetry coefficient S
with temperature for 0 ≤ T ≤ 2 MeV. (b) The dependence of the symmetry coefficient S(T ) on
the asymmetry parameter δ2 for T = 1, 1.5, 2 MeV [9].

with the asymmetry parameter δ2, where δ = (N −Z)/A, for T = 1, 1.5, 2 MeV. For all
temperatures, the symmetry coefficient peaks for 74Ni and has the lowest value for the
doubly magic 78Ni. This trend can be explained as follows. Equation (8) indicates that
a higher value of total effective mass at T = 0, m∗(T = 0)/M , corresponds to a higher
value of the symmetry coefficient S(T ). Since the k mass is temperature-independent, the
trend of m∗(T = 0)/M throughout the Ni isotopes is solely determined by the ω mass.
According to eqs. (5)-(7), for each temperature T , the ω mass is inverse proportional to
the dominant spectroscopic factors and the BCS occupation probabilities of the single-
quasiparticle states around Fermi surface. As shown in ref. [9], the 72−76Ni isotopes
exhibit the lower spectroscopic factors, which implies the stronger fragmentations, as
compared to those of 68Ni and 78Ni isotopes. Furthermore, the 74Ni isotope has the
lowest BCS occupation probability, i.e., v2(k) = 0.53 at the Fermi surface, which leads to

the enhancement of the effective mass m∗(T = 0)/M , and, hence, the highest symmetry
coefficient S(T ).
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