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Summary. — Experimental particle physics demands a sophisticated trigger and
acquisition system capable to efficiently retain the collisions of interest for further
investigation. Heterogeneous computing with the employment of FPGA cards may
emerge as a trending technology for the triggering strategy of the upcoming high-
luminosity program of the Large Hadron Collider at CERN. In this context, this
work presents two machine-learning algorithms for selecting events where neutral
long-lived particles decay within the detector volume studying their accuracy and
inference time when accelerated on commercially available Xilinx FPGA accelerator
cards. The inference time is also compared with a CPU- and GPU-based hardware
setup. The results indicate that all tested architectures fit within the accuracy and
latency requirements of a second-level trigger farm and that exploiting accelera-
tor technologies for real-time processing of particle-physics collisions is a promising
research field that deserves additional investigations, in particular with machine-
learning models with a large number of trainable parameters.

1. — Introduction

The trigger and data acquisition system is a crucial aspect in experimental particle
physics at colliders. It is challenging to efficiently collect collision data for analysis due
to the complexity of the detector data and the need for quick processing. The ATLAS
and CMS experiments at CERN’s Large Hadron Collider (LHC) use a two-tier trigger
system to select collision events for storage and analysis. The initial 40 MHz proton-
proton collision rate produced by the LHC is first reduced to around 100 kHz by a
hardware-based Level-1 (L1) trigger system, and further reduced to around 1 kHz by a
software High Level Trigger (HLT), optimizing event selection while considering latency,
throughput, data transfer, and storage capabilities. With the upcoming high-luminosity
LHC (HL-LHC) phase, new design solutions, such as FPGA-accelerated machine learning
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inference, may be needed to handle the increased occupancy and readout channels of the
upgraded detectors.

In this context, this work studies the possibility to implement Deep Neural Network
(DNN) based algorithms for the event selection at the HLT, and to use commercial
accelerator boards based on FPGA processors to improve the performance in terms
of processing time and throughput. FPGAs are reconfigurable hardware architectures
which can be adapted for specific tasks and are traditionally programmed using hardware
description languages like VHDL or Verilog. In recent years several tools and libraries
were developed to facilitate the implementation and deployment of both traditional and
machine learning algorithms on FPGAs, like the Vitis-Al tool released by the Xilinx
company that is used in this work.

This work shows different DNN-based models for targeting the selection of events
where neutral long-lived particles decay within the detector volume. We present the
design and the results of the implementation in a working engineering pipeline that starts
from the pre-processing of the input data, to the training of the DNN-based model, to the
optimization and deployment on two Xilinx FPGA accelerators, the Alveo U50 and the
Alveo U250, all based on the use of publicly available libraries. Two approaches based on
a deep convolutional neural network and on an autoencoder are developed and presented.
A comparison of the performances of the deployed algorithms in CPU, GPU and FPGA
accelerators is also shown. This work is also available on the Machine Learning: Science
and Technology journal as a paper titled “Fast Neural Network Inference on FPGAs for
Triggering on Long-Lived Particles at Colliders” [1].

2. — Physics benchmark and datasets

This work focuses on the identification of neutral long-lived particles (LLPs), arising
from a variety of beyond the SM scenarios proposed in literature, with the data collected
by the muon spectrometer (MS) of a typical experiment at the LHC. A toy simulation
of the monitored drift tube (MDT) detector together with the superconducting toroidal
magnetic field of the ATLAS experiment is developed, together with the physics bench-
mark of a neutral LLP decaying to charged particles.

Physics processes are simulated with a number of charged particles as decay products
from two to ten, representative of the cases of two-body and multi-body decays of a X
particle with a uniformly distributed decay length L, in the range [0, 5] m.

Images has vertical bin size equal to 20, that corresponds to the number of MDT
chambers layers, while the horizontal axis is set to 333 and represents a realistic average
number of MDT tubes in the ATLAS detector. For each choice of charged particle
multiplicity, bk images are generated separately, with a total of 45k available events.
The sample is randomly split in two parts so that 80% of the images are employed for
models training and the remaining 20% for the evaluations.

3. — Neural network models

In this work two algorithms representative of two different triggering philosophies are
developed and characterised. A deep convolutional neural network (CNN) is trained for
regressing the L, parameter of the neutral LLP while an autoencoder (AE) is trained
exclusively on events where the decays of the LLP occurred near the interaction point for
detecting anomalies. Once trained and deployed in the trigger and acquisition system,
the CNN and the AE can be employed to define a selection criteria based, in the first
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Fig. 1. - ROC curves for the CNN (left) and the AE (right) models. LLP decays are labelled as
signal if 3m < L, < 5m and as background if 0m < L, < 1m. Track multiplicity between two
and ten, and between two and four, is used for creating the background dataset, respectively
for the CNN and the AE models. In contrast, the track multiplicity is considered separately for
signal.

case, on the inferred L, parameter and, in the second case, on the likelihood of the event
to not only contain prompt decays.

The CNN model comes with ~2.8M trainable parameters, while the AE model
with ~398k, and ~162k for the encoder part. We highlight how the chosen architec-
tures are not ideal for the typical sparsity and cardinality of the data emerging from
particle-physics collisions; they were chosen, instead, because they are fully supported
by the adopted publicly available libraries.

4. — Results

Models performance were studied in terms of prediction accuracy, signal efficiency
and background rejection, and the Receiver Operating Curves (ROCs) were produced
for both models for different number of tracks in the final state.

For inference time comparison, two FPGA boards are considered: Xilinx Alveo U50
and U250. The AE model couldn’t be run on the U250 due to lack of support for the
Reshape layer in Xilinx Vitis-ATI tool. It’s important to note that the server configurations
for the two cards are different, making direct performance comparison between U50 and
U250 for the CNN model difficult. To accelerate the FPGA cards, preliminary operations
are required. The Xilinx distributed Vitis-Al tool provides a complete workflow for this
purpose, by the quantization step to the final inference one.

The ROC curves demonstrate the capability of the CNN model to effectively learn
the decay position independently of the multiplicity of the charged decay products, while
a dependence on the multiplicity is clearly evident for the AE model.

The inference time and the throughput of the CNN and AE models on different
architectures are also studied and results are presented in table I and were achieved
using a consistent batch size value for CPU and GPU based deployment and for them
the models were converted into the Open Neural Network Exchange (ONNX) format
with the runtime engines corresponding to these two architectures. The measurements
on the CPU were performed using all the cores and on a machine equipped with AMD
EPYC 7302 16-Core processors. The measurements on the GPU were performed on a
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TABLE 1. — Models inference time in ms and throughput in frames per second on different target
architectures.

CNN Model CPU GPU U50 U250
Inference time [ms| 51+ 1.1 1.0 £ 0.1 3.7£0.1 31+04
Throughput [fps] 302 £ 4 9930 + 187 950 £ 5 553 £ 4
AE Model CPU GPU U50 U250
Inference time [ms] 0.7+ 0.1 0.41 £+ 0.01 2.6 £0.3 /
Throughput [fps] 3477 £ 210 79238 £ 2358 1497 £ 3 /

GPU NVIDIA Tesla V100, and using the float models before quantization. The inference
time results are obtained by averaging on few tens of measurements. The throughput
is estimated by inferring the models with 10k images. The first measurements of both
inference time and throughput on accelerators are discarded since they were observed to
be systematically higher.

5. — Conclusions

Overall the study indicates that all architecture technologies offer inference time and
throughput adequate for the typical latency requirements of a high-level trigger selection
in a general-purpose experiment at LHC or HL-LHC. The inference time for the CNN
model suggests that the acceleration on FPGA gives an advantage compared to the
CPU-based approach. A similar advantage is not evident for the AE model. This can be
attributed to the lightness of the model in terms of number of parameters, which results
in the actual inference time being negligible compared to the time needed for loading the
data onto the FPGA itself.

The throughput measurements also indicate the superiority of the FPGA-acceleration
approach compared to the CPU-based one for the CNN model, and not for the AE model
for the same considerations just expressed. In addition the throughput on the GPU
architecture seems to suggest the superiority of this approach but this is achieved, as the
corresponding measurements on the inference time confirm, only thanks to the capability
of GPUs to process inference concurrently, and such high degree of concurrent computing
can’t be directly injected within a multi-node high-level trigger farm at colliders. All
results are available also in the published paper in ref. [1].
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