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Low-lying baryon resonances from lattice QCD
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Summary. — Recent results studying the masses and widths of low-lying baryon
resonances in lattice QCD are presented. The S-wave Nπ scattering lengths for both
total isospins I = 1/2 and I = 3/2 are inferred from the finite-volume spectrum
below the inelastic threshold together with the I = 3/2 P -wave containing the
Δ(1232) resonance. A lattice QCD computation employing a combined basis of
three-quark and meson-baryon interpolating operators with definite momentum to
determine the coupled channel Σπ-NK scattering amplitude in the Λ(1405) region
is also presented. Our results support the picture of a two-pole structure suggested
by theoretical approaches based on SU(3) chiral symmetry and unitarity.

1. – Overview and methodology

Recent results [1,2] obtained in lattice QCD involving the scattering of nucleons and
Σ baryons with pions and antikaons are presented in this talk. The goal of the studies
discussed here is to determine properties of some of the low-lying baryon resonances,
such as the Δ(1232) and Λ(1405).

(∗) Speaker.
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The properties of hadron resonances are encoded in the spectrum of finite-volume
stationary-state energies involving the interactions among the decay products. In lattice
QCD, the finite-volume spectrum of the appropriate symmetry channels is first deter-
mined, then the scattering K-matrix is parametrized, and fits to the spectrum through
the Luscher quantization condition are carried out to find best-fit values of the K-matrix
parameters. With these in hand, analytic continuation is used to locate the poles of the
transition matrix, which yield the resonance information.

To determine the finite-volume stationary-state spectrum in lattice QCD, a set of
appropriate interpolating operators Oi(t) must be introduced. The role of these operators
is to create states with significant overlaps onto the low-lying stationary states through
their actions on the QCD vacuum |0〉. It is important that both single-hadron and two-

hadron operators are included. Using these operators, a matrix Cij(t) = 〈0|Oi(t)O
†
j(0)|0〉

of temporal correlations are then evaluated. With a suitable diagonalization of this
correlation matrix, the stationary-state energies can be extracted from the exponential
fall-offs of the eigenvalues. The success of such extractions depends crucially on the use
of very well designed operators which produce states with little overlaps onto higher
lying states that contaminate the signal. Much work has been done in the past [3, 4]
to design such operators. Evaluating the correlator matrix elements involving multi-
hadron operators requires techniques to efficiently incorporate time-slice to time-slice

Fig. 1. – The low-lying I = 1/2 (top) and I = 3/2 (bottom) nucleon-pion spectra in the center-
of-momentum frame on the D200 ensemble. Each column corresponds to a particular irrep Λ
of the little group of total momentum P 2 = (2π/L)2d2, denoted Λ(d2). Dashed lines indicate
the boundaries of the elastic region. Solid lines and shaded regions indicate non-interacting Nπ
levels and their associated statistical errors. Levels employed in subsequent fits to constrain the
scattering amplitudes are shown with solid symbols. Energies are shown as ratios over the pion
mass mπ.



LOW-LYING BARYON RESONANCES FROM LATTICE QCD 3

quark propagators. Our computations make use of the stochastic LapH method [5].
The next step is to parametrize either the K-matrix or its inverse, then find best-fit

values of these parameters by matching the spectrum obtained from the quantization
condition det( ˜K−1(Ecm) − B(P )(Ecm)) = 0, where Ecm is the center-of-mass energy, ˜K
is related to K by threshold factors, and B(P ) is the box matrix for total momentum P ,
to the spectrum obtained from lattice QCD. The above quantization condition and the
box matrix elements are discussed in detail in ref. [6], and references contained therein.

2. – Results

The results shown here use 2000 configurations of the D200 ensemble generated by
the CLS Collaboration. The lattice is 643 × 128 with lattice spacing a ∼ 0.066 fm, pion
mass mπ ∼ 200 MeV, and kaon mass mK ∼ 480MeV.

Results for the spectrum of Nπ states in finite volume are shown in fig. 1. The
scattering amplitudes obtained using this spectrum are shown in fig. 2. The bottom left

Fig. 2. – The JP = 1/2− (top left) and JP = 3/2+ (top right) scattering amplitudes obtained
from fits to the I = 3/2 spectrum in fig. 1. The lower panel of each partial wave shows the
squares of the center-of-mass momenta of the finite-volume levels which contribute to fitting
that partial wave. Most levels, shown with solid symbols, contribute to both partial waves, so
solving for the partial wave phase shift shown in the upper panel cannot be done. When a
particular level couples only to the partial wave shown, a phase shift point can be obtained from
the energy level and is shown in the upper panel. Hollow symbols indicate such levels. (Bottom
left) Scattering phase shift of the I = 3/2, JP = 3/2+ partial wave containing the Δ(1232)
resonance. Levels used in the fit are shown in the lower panel, but no data points are shown in
the upper panel to more clearly show the final fit form. (Bottom right) Determination of the
scattering length of the JP = 1/2− wave from fits to the I = 1/2 spectrum in fig. 1.
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plot in this figure shows the Δ(1232) resonance. The S-wave isosinglet and isotriplet

scattering lengths we obtained are mπa
3/2
0 = −0.2735(81), mπa

1/2
0 = 0.142(22), and the

Δ-resonance mass and width parameters were found to be

(1)
mΔ

mπ
= 6.257(35), gΔ,BW = 14.41(53),

where the Breit-Wigner parameter is given by g2Δ,BWq3cm cot(δ3/2+) = 6πEcm(m
2
Δ−E2

cm).

The finite-volume spectrum and resulting coupled-channel πΣ − K̄N transition am-
plitudes for the isospin I = 0 and strangeness S = −1 are shown in fig. 3. The transition

Fig. 3. – (Top) Finite-volume stationary-state energy spectrum, shown as green points, in the
center-of-mass frame for total isospin I = 0, strangeness S = −1, and various symmetry chan-
nels indicated along the horizontal axis. The gray bands show the locations of energy sums for
non-interacting two-particle combinations. Various two- and three-particle thresholds are shown
as dashed horizontal lines. (Bottom left) The isospin I = 0 and strangeness S = −1 coupled-
channel πΣ− K̄N transition amplitudes as a function of center-of-mass energy difference to the
πΣ threshold. The quantities t and k̂ are defined in the text, and the subscripts i, j refer to
the flavor channels. The middle panel shows the positions of the S-matrix poles in the complex
center-of-mass energy plane on the sheets closest to the physical one. The bottom panel shows
the finite-volume spectrum used to constrain the fits involving the transition amplitudes. (Bot-
tom right) Inelasticity η and phase shifts δπΣ and δK̄N against center-of-mass energy difference
to the πΣ threshold.
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elements t
(JP )
ij (Ecm) are defined by t−1 = ˜K−1 − îk, where mπ

̂k = diag(kπΣ, kK̄N ), with
kπΣ, kK̄N defined in ref. [2]. Another way of presenting the results for the amplitudes
is to show the scattering phase shifts δi and the inelasticity η, which are shown in the
lower right plot of this figure. These amplitudes, continued to the complex energy plane,
exhibit a virtual bound state below the Σπ threshold and a resonance pole just below the
NK threshold. These findings are broadly consistent with predictions from unitarized
chiral effective field theory [7]. The energies of these poles are

E1 = 1395(9)stat(2)model(16)a MeV,(2)

E2 = 1456(14)stat(2)model(16)a − i× 11.7(4.3)stat(4)model(0.1)a MeV.(3)

The first errors are statistical, the second are from model variations, and the last from
scale setting. This is a first-time calculation in lattice QCD of scattering amplitudes
in a coupled-channel meson-baryon system. All energies used in this study lie below
three-hadron thresholds; extensions of the formalism to include such levels are ongoing.

∗ ∗ ∗
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