Colloquia: HADRON2023

T_{cc} states of D^*D^* and $D^*_sD^*$ molecular nature

L. R. $DAI(^1)(^*)$, E. $OSET(^2)$ and R. $MOLINA(^2)$

- ⁽¹⁾ School of Science, Huzhou University Huzhou, 313000, Zhejiang, China
- (²) Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigación de Paterna - Aptdo.22085, 46071 Valencia, Spain

received 21 December 2023

Summary. — The newly observed T_{cc} state can be explained as a molecular state of D^*D in the chiral unitary approach. An extension to D^*D^* and $D_s^*D^*$ systems in the $J^P = 1^+$ will be discussed in the present work. We make predictions that the D^*D^* system leads to a bound state with a binding of the order of MeV and similar width, while the $D_s^*D^*$ system develops a strong cusp around threshold.

1. – Motivation

The newly observed T_{cc} state is close to the D^*D threshold and the width is very small [1]. This state can be explained as a molecular state of D^*D in the chiral unitary approach [2], both the width and the $D^0D^0\pi^+$ mass distribution are in remarkable agreement with the experiment [1]. In the theoretical framework of D^*D system [2], the chiral unitary coupled channel approach $(D^{*+}D^0, D^{*0}D^+)$ is utilized and the interaction was obtained from exchange of vector mesons in a straight extrapolation of the local hidden gauge approach. This approach has been successfully applied to the charm sector [3], in which the only parameter was a cutoff regulator in the Bethe-Salpeter equation.

Encouraged by this D^*D work, we make an extension of the above case to D^*D^* and $D_s^*D^*$ systems [4]. There are three reasons for the extension. First, heavy-quark spin symmetry allows to relate the D and D^* sectors. Second, it was also found that the D^*D^* system in $I = 0, J^P = 1^+$, and the $D_s^*D^*$ system in $I = \frac{1}{2}, J^P = 1^+$, both cases have attractive potentials, strong enough to support bound states [5]. Third, the new T_{cc} experimental information can provide valuable information to fix the regulator of the meson-meson loop function [1].

In the present work, since the vector-vector (VV) states with 1⁺ cannot decay to pseudoscalar-pseudoscalar (PP) if we want to conserve spin and parity, thus we consider instead the decay into vector-pseudoscalar (VP) channel which will give a width to the bound states that we find.

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0)

^(*) E-mail: dailianrong@zjhu.edu.cn

L. R. DAI et al.

Fig. 1. – Terms for the VV interaction: (a) contact term; (b) vector exchange.

2. – Formalism

The mechanisms for the interaction are depicted in fig. 1, and the corresponding Lagrangians are given:

(1)
$$\mathcal{L}^{(c)} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle, \quad \mathcal{L}_{VVV} = ig \langle V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V_{\mu} V^{\mu} \rangle,$$

with $g = \frac{M_V}{2f}$ ($M_V = 800 \text{ MeV}, f = 93 \text{ MeV}$), where $\mathcal{L}^{(c)}$ is a contact term and \mathcal{L}_{VVV} stands for the three-vector vertex. The V_{μ} is the $q\bar{q}$ -matrix written in terms of vector mesons

(2)
$$V_{\mu} = \begin{pmatrix} \frac{\omega}{\sqrt{2}} + \frac{\rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & \frac{\omega}{\sqrt{2}} - \frac{\rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}_{\mu}$$

The interaction between vectors exchanging vector mesons will generate the bound states or resonances [6,7]. Extrapolated to the charm sector, it predicted the pentaquark states [3], which were later confirmed by the LHCb experiments [8,9].

From refs. [6,7], we can obtain the potential for D^*D^* system,

(3)
$$V_{D^*D^* \to D^*D^*} = \frac{g^2}{4} \left(\frac{2}{m_{J/\psi}^2} + \frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2} \right) \times \{ (p_1 + p_4).(p_2 + p_3) + (p_1 + p_3).(p_2 + p_4) \},$$

and potential for $D_s^* D^*$ system,

(4)
$$V_{D_s^*D^* \to D_s^*D^*} = -\frac{g^2(p_1 + p_4).(p_2 + p_3)}{m_{K^*}^2} + \frac{g^2(p_1 + p_3).(p_2 + p_4)}{m_{J/\psi^2}}.$$

We further solve the Bethe-Salpeter equation,

(5)
$$T = [1 - VG]^{-1}V,$$

with G the loop function which can be regularized by the value of the cutoff.

In order to obtain the imaginary part for the $D^*D^* \to D^*D$ (I = 0) case, we consider total 32 decay box diagrams. In fig. 2, where the meaning of the right-hand side is that

Fig. 2. – Diagrams to be calculated with their respective weights.

the set of diagrams must be completed exchanging the vectors $D^*(p_3) \leftrightarrow D^*(p_4)$ in the final state, given the identity of the two D^* in the final state and when $p_3, \epsilon_3 \leftrightarrow p_4, \epsilon_4$ (ϵ_i is the polarization vector of particle i) are exchanged, there is a relative (-1) sign [4].

The isospin doublets $(D^+, -D^0)$ and $(D^{*+}, -D^{*0})$

(6)
$$|D^*D^*, I=0\rangle = -\frac{1}{\sqrt{2}}|D^{*+}D^{*0} - D^{*0}D^{*+}\rangle.$$

This D^*D^* system can decay into $D^{*+}D^0$ or $D^{*0}D^+$. We find some diagrams with the same structure and only the isospin coefficients are different, thus these diagrams can be classified into 4 kinds with weight of each kind of diagrams $\frac{1}{4}(1+2+2+4+4+2+2+1) = \frac{18}{4} = \frac{9}{2}$.

⁴ We find that two new vertices for the box diagrams will need to be evaluated. Finally, using the projectors into the different spin states of $J = 1, 2, 3, \mathcal{P}^{(0)}, \mathcal{P}^{(1)}, \mathcal{P}^{(2)}$, the product of all four vertices will be calculated [6]. Altogether for the $J^P = 1^+$ state, we obtain the contribution for the four diagrams, keeping the positive energy part of the propagators of the heavy particles and performing the q^0 analytically

(7) Im
$$V_{\text{box}} = -\frac{6}{8\pi} \frac{q^5}{\sqrt{s}} E_{D^*}^2 (\sqrt{2}g)^2 \left(\frac{G'}{2}\right)^2 \left[\frac{1}{(p_2^0 - E_D(q))^2 - q^2 - m_\pi^2}\right]^2 F^4(q) F_{HQ},$$

where

$$q = \frac{\lambda^{1/2}(s, m_{D^*}^2, m_D^2)}{2\sqrt{s}}, \quad F(q) = e^{((q^0)^2 - q^2)/\Lambda^2}, \quad q^0 = p_1^0 - E_{D^*}(q), \quad E_{D^*} = \frac{\sqrt{s}}{2},$$
$$F_{HQ} = \frac{m_{D^*}^2}{m_{K^*}^2}, \qquad G' = \frac{3\,g'}{4\pi^2 f}, \qquad g' = -\frac{G_V m_{\rho}}{\sqrt{2}f^2}, \qquad G_V = 55\,\text{MeV}.$$

Next we continue to consider another decay box diagrams in fig. 3 to obtain the imaginary part for $D_s^*D^* \to D_s^*D + D_sD^*$ case:

(8)

$$\operatorname{Im} V_{\text{box}} = -\frac{1}{3} \frac{1}{8\pi} \frac{1}{\sqrt{s}} (2g)^2 \left(\frac{G'}{\sqrt{2}}\right)^2 (E_1 E_3 + E_2 E_4) \times q^5 \left[\frac{1}{(p_2^0 - E_{D_s}(\boldsymbol{q}))^2 - \boldsymbol{q}^2 - m_K^2}\right]^2 F^4(q) F_{HQ},$$

L. R. DAI et al.

$$D_{s}^{*+} \underbrace{(p_{1})}_{(p_{1}-q)} \underbrace{D_{s}^{*+}}_{(p_{1}-q)} \underbrace{(p_{1}-q)}_{(p_{1}-q)} \underbrace{D_{s}^{*+}}_{(p_{2}+q)} \underbrace{(p_{1})}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}+q)} \underbrace{(p_{2}+q)}_{(p_{2}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{D_{s}^{*+}}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)}_{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{4}+q)} \underbrace{(p_{2}-p_{$$

Fig. 3. – Diagrams for the decay of $D_s^{*+}D^{*+}$ into $D_s^{*+}D^+$ and $D_s^+D^{*+}$.

where

$$q^0 = p_2^0 - E_{D_s}(\boldsymbol{q}), \qquad q = \frac{\lambda^{1/2}(s, m_{D^*}^2, m_{D_s}^2)}{2\sqrt{s}}, \qquad p_2^0 = \frac{s + m_{D^*}^2 - m_{D_s^*}^2}{2\sqrt{s}}.$$

3. – Results

Now we will solve the Bethe-Salpeter equation

(9)
$$V \to V + i \,\mathrm{Im}V_{\mathrm{box}}$$

to obtain the *T*-matrix. Further by plotting the amplitudes of $|T|^2$, we obtain the mass of the state and its width.

In fig. 4 we show the predictions for the D^*D^* system, it is seen the bound states with binding of the order of MeV, and the width of the D^*D^* system is much larger than the one of the T_{cc} state, since we have the decay channel D^*D , where there is a much larger decay phase space [4]. As noticed, the width of the T_{cc} state is only 40–50 keV, due to the very little phase space for the $D^* \to D\pi$ decay [2].

In fig. 5 we show the predictions for the $D_s^*D^*$ system, in which no bound state is seen, instead, we find pronounced cusps at the $D_s^*D^*$ threshold. This is a consequence of the weaker potential compared to D^*D^* , because of the different factors of ImV_{box} from π exchange and kaon exchange, respectively.

Fig. 4. – The amplitudes $|T|^2$ at $q_{\text{max}} = 420$ MeV and $q_{\text{max}} = 450$ MeV, the vertical line shows the threshold of D^*D at 4017.1 MeV.

Fig. 5. – The amplitudes $|T|^2$ at $q_{\text{max}} = 420 \text{ MeV}$ and $q_{\text{max}} = 450 \text{ MeV}$, the vertical line shows the threshold of $D_s^* D^*$ at 4122.46 MeV.

4. – Summary

Encouraged by the experiment of the T_{cc} state close to the D^*D threshold, which can be explained as a molecular state of D^*D in the chiral unitary approach, we made an extension to D^*D^* with I = 0 and $D_s^*D^*$ with $I = \frac{1}{2}$ systems to investigate the possible existence of bound states or resonances. We use the new experimental information from the T_{cc} state to fix the cutoff and then evaluate the decay box diagrams to get the width. We find the bound state of the D^*D^* system with a binding of the order of MeV and its width is much larger than the one of the T_{cc} state. The $D_s^*D^*$ system develops a strong cusp around threshold, and its width is much smaller than that of the D^*D^* state due to the different exchanges from pion and kaon, respectively.

* * *

The authors acknowledge supports partly from the National Natural Science Foundation of China under Grants Nos. 12175066 and 11975009.

REFERENCES

- [1] LHCb COLLABORATION (AAIJ R. et al.), Phys. Rev. Lett., 125 (2020) 242001.
- [2] FEIJOO A., LIANG W. H. and OSET E., Phys. Rev. D, 104 (2021) 114015.
- [3] WU J. J., MOLINA R., OSET E. and ZOU B. S., Phys. Rev. Lett., 105 (2020) 232001.
- [4] DAI L. R., MOLINA R. and OSET E., Phys. Rev. D, 105 (2022) 016029; 106 (2022) 099902(E).
- [5] MOLINA R., BRANZ T. and OSET E., Phys. Rev. D, 82 (2010) 014010
- [6] MOLINA R., NICMORUS D. and OSET E., Phys. Rev. D, 78 (2008) 114018.
- [7] GENG L. S. and OSET E., Phys. Rev. D, 79 (2009) 074009.
- [8] LHCb COLLABORATION (AAIJ R. et al.), Phys. Rev. Lett., 115 (2015) 072001.
- [9] LHCb COLLABORATION (AAIJ R. et al.), Phys. Rev. Lett., 122 (2019) 222001.