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Tensor glueball decay into nucleon-antinucleon
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Summary. — In the context of a chiral hadronic model, we compute the decay
ratio of a tensor glueball decaying into a nucleon and antinucleon compared to the
decay into 2 pions. Tensor meson dominance is assumed to also hold for the tensor
glueball in order to relate the coupling constants of the different decay channels.
We find that the decay width to nucleons is slightly larger than the decay width to
pions, but still in the same order of magnitude.

1. – Introduction

Glueballs, bound states made of only gluons, are one of the oldest predictions of
Quantum Chromodynamics (QCD) [1]. Various theoretical (e.g., [2-4]) and experimen-
tal [5] works have made progress, yet their experimental status is not resolved [6-9].
Different theoretical methods agree on the mass hierarchy of the lowest lying glueball
states, with the scalar (JPC = 0++) being the lightest and the tensor (JPC = 2++)
the second lightest glueball. In this work, in the context of a chiral model described
in [10, 11], we will calculate the decay of the tensor glueball into a nucleon-antinucleon
pair, based on arguments used in tensor mesons dominance models. Different glueballs
have been studied before in hadronic models, such as the scalar glueball in [12] and the
pseudoscalar glueball in [13].

2. – Decay amplitude

The decays of the tensor glueball were studied in the extended Linear Sigma Model
in [10], where the ρρ and K∗K̄∗ channels were found as the dominant decays. Here,
we extend that model by coupling the tensor glueball to nucleons with the following
interaction term [14,15]:

(1) LGNN =
gNN

m
GμνN̄

(
γμ

↔
∂ν + γν

↔
∂μ

)
N,
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Fig. 1. – Feynman diagram for tensor glueball decay.

where Gμν is the tensor glueball, N̄ ,N is the (anti-)nucleon field containing the proton

and neutron, i.e., NT = (p, n), m is the nucleon mass, and
↔
∂μ =

→
∂μ −

←
∂μ. Writing it out

explicitly and using the symmetry of Gμν we have the Feynman diagram in fig. 1 and
the associated matrix element

(2) M(α, r, s) = 2
gNN

m
εμν(�p, α)ū(�k1, r)γ

μqνv(�k2, s),

with εμν(p, α) the spin-2 polarization tensors, ū(�k1, r), v(�k2, s) Dirac spinors, and
q = k1 − k2 is the difference of outgoing momenta. Using the Casimir trick, the spin-
averaged modulus squared matrix element is

¯|M|2 =
4

5

(gNN

m

)2 ∑
α

εμν(p, α)εμ′ν′(p, α)qνqν
′
Tr [γμ(/k2 −m)γμ′(/k1 +m)].(3)

The polarization tensors fulfill the completeness relation [16]

(4)
∑
α

εμν(p, α)εμ′ν′(p, α) =
1

2
(Aμμ′Aνν′ +Aμν′Aμ′ν)−

1

3
AμνAμ′ν′ ,

with the tensor Aμν defined as

(5) Aμν = gμν − pμpν
M2

,

with M being the mass of the tensor glueball, which we take from lattice QCD to be
2369MeV [4]. It is useful to note early on that p · q = (k1 + k2) · (k1 − k2) = k21 − k22 = 0
since it is the mass difference of the two daughter particles. This simplifies things because
any pν , pν′ from the completeness relation automatically gives 0. The amplitude squared
then becomes

¯|M|2 =
4

5

(gNN

m

)2
[
1

2

(
gμμ′ − pμpμ′

M2

)
gνν′ +

1

2
gμν′gμ′ν − 1

3
gμνgμ′ν′

]
qνqν

′
(6)

×
(
k2αk1βTr[γ

μγαγμ′
γβ ]−m2Tr[γμγμ′

]
)
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Using well-known trace identities for gamma matrices and contracting with q we find

¯|M|2 =
16

5

(gNN

m

)2
[
1

2

(
gμμ′ − pμpμ′

M2

)
q2 +

1

6
qνqν′

]
(7)

×
(
kμ1 k

μ′

2 + kμ
′

1 kμ2 − (k1 · k2)gμμ
′ −m2gμμ

′
)
,

which simplifies to

¯|M|2 =
16

5

(gNN

m

)2
[
q2

2

(
−(k1 · k2)− 3m2 − 2

(p · k1)(p · k2)
M2

)
(8)

+
1

6

(
2(k1 · q)(k2 · q)− (k1 · k2)q2 −m2q2

)]
.

Evaluating all dot products in the rest-frame of the tensor glueball the amplitude takes
the form

(9)
8

15

(gNN

m

)2 (
3M4 − 4m2M2 − 32m4

)
.

The decay width for a boson decaying into two nucleons is given by [17]

(10) ΓGNN̄ =2

√
M2

4 −m2

8πM2
¯|M|2= 1

30

(
2gNN

m

)2

√
M2

4 −m2

πM2

(
3M4−4m2M2−32m4

)
,

where the factor 2 counts the pp̄ and nn̄ modes. Note that 3M4 − 4m2M2 − 32m4 =

4(M
2

4 −m2)(3M2 + 8m2), and M2

4 −m2 = | �k1|2, so the decay width is proportional to

| �k1|3. As expected for a P -wave decay like this one, the decay width is proportional to

| �k1|2l+1 with l = 1.

3. – Tensor meson dominance and decay ratio

We cannot compute the decay width without knowing the value of gNN . Although this
coupling constant is not known experimentally, assuming tensor meson dominance [15]
one has certain relations between couplings of different channels for the tensor meson
decays. We will assume these for the tensor glueball as well. The Lagrangian for the
decay of the tensor glueball to 2 pions is of the form [10,11]

(11) LGππ =
gππ
M

Gμν∂
μ�π∂ν�π,

where �π = (π1, π2, π3) refers to the isospin triplet. This Lagrangian leads to decay width
of the form

(12) ΓGππ = 6
(gππ
M

)2

(
M2

4 −m2
)

5/2

60πM2
,
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where the factor 6 counts the isospin and identical particle factors. Tensor meson dom-
inance states that the dominant contribution to the hadron energy momentum tensor
Θμν is the tensor mesons Tμν . Then, assuming tensor meson dominance leads to the
following identity [15]:

(13)
2gNN

m
=

gππ
M

,

which we will assume is also a valid approximation for the tensor glueball. This allows
us to calculate the decay ratio of G → NN̄/G → ππ as

(14)
ΓGNN̄

ΓGππ
≈ 5.3.

The decay ratio is large enough to be a relevant factor in the search for a tensor glueball.
In comparison to a chiral hadronic model [10] or a holographic model [18], the decay width
is lower than the 2-vector channel widths, but larger than the other channels. For example
compared to the dominant ρρ channel found in [10], the ratio is ΓGρρ/ΓGNN̄ ≈ 9.6. The
applicability of tensor meson dominance to the tensor glueball is not completely clear,
so it is at best an approximate result. However, as an order of magnitude estimation,
the outcome can be useful.

4. – Conclusion

In this note we have computed the tensor glueball decay ratio of the nucleon-
antinucleon and 2-pion channels. A speculative assumption of tensor meson dominance
relations applying also to the tensor glueball has been made. The approximate result we
obtained for the decay into nucleon-antinucleon is larger than the 2-pion ratio but the
ratio is still of order 1. Compared to previous works it is not the largest decay channel
found. Nevertheless it could still be a fruitful process to investigate in glueball searches.
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