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Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, Sezione di Milano-Bicocca
Piazza della Scienza 3, I-20126 Milano, Italy

received 21 December 2023

Summary. — Hadronic spectral densities play a pivotal role in particle physics,
a prime example being the R-ratio defined from electron-positron scattering into
hadrons. To predict them from first principles using Lattice QCD, we face a numer-
ically ill-posed inverse problem, due to the Euclidean signature adopted in practical
simulations. Here we present a recent numerical analysis of the vector isovector
spectral density extracted using the multi-level algorithm (recently extended also to
the case of dynamical fermions) and discuss its implications.

1. – Introduction and motivations

Hadronic spectral densities are directly involved in the computation of many physi-
cally relevant quantities, e.g., the anomalous magnetic moment of the muon [1] or the
Vcb element of the CKM matrix [2, 3]. Lattice QCD provides a framework for their
non-perturbative prediction from first principles, with simulations on a discretized, finite
lattice with Euclidean metric. Spectral densities ρ(E) are related to correlation functions
C(t) along the Euclidean time axis t as

(1) C(t) =

∫ ∞

E0

dE ρ(E)bt(E), bt(E) = e−tE , 0 ≤ E0 < Ethr,

for theories with a mass gap Ethr > 0. To reconstruct ρ from measurements of C, the
textbook Bromwich integral in the complex plane to solve the inverse Laplace transform
is impractical due to the (discrete) Euclidean times at which C is known in lattice cal-
culations. In this work, we modify the Backus-Gilbert original method [4-6], focusing on
identifying the ideal balance between statistical and systematic errors in the reconstruc-
tion. Additionally, we present preliminary results for the isovector vector spectral density
smeared with a Gaussian kernel with width σ = Mπ, obtained from the corresponding
Euclidean correlators estimated with high accuracy in ref. [7] using the multi-level al-
gorithm. The calculation is performed at a single lattice spacing with two degenerate
dynamical fermions, tuned such that Mπ � 270MeV.

2. – The inverse problem

The extraction of smeared spectral densities from lattice correlation functions in
eq. (1) can involve different correlator-dependent choices of basis functions bt(E). In
our case, C(t) is the zero-momentum two-point function of two isovector vector currents
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and bt(E) = E2
(
e−tE + e−(T−t)E

)
, with T the extent of the time direction along which

we impose (anti-)periodic boundary conditions for bosons (fermions). We are interested
in extracting smeared spectral densities(1)

(2) ρσ(E∗) =

∫ ∞

E0

dE ρ(E)δσ(E,E∗), with δσ(E,E∗) =
1√
2πσ2

e−(E−E∗)
2/2σ2

,

such that, as σ → 0, δσ(E,E∗) → δ(E−E∗) and we recover ρσ(E∗) → ρ(E∗). The kernel
δσ is approximated with the basis functions as

(3)

tmax∑
t=tmin

bt(E)gt(E∗) = δ̄σ(E,E∗) ≈ δσ(E,E∗),

where we usually consider tmin = a and require tmax < T/2, so that

(4)

tmax∑
t=tmin

C(t)gt(E∗) =

∫ ∞

E0

dE ρ(E)δ̄σ(E,E∗) ≡ ρ̄σ(E∗) ≈ ρσ(E∗).

The computation of the coefficients {gt(E∗)}tmax
t=tmin

is done by minimizing the error func-
tional

(5) W[g] =

∫ ∞

E0

dE
[
δσ(E,E∗)− δ̄σ(E,E∗)

]2
+

tmax∑
t,r=tmin

gt(E∗)Btrgr(E∗),

where the first term measures the systematic error on the kernel reconstruction and
the second one acts as a regulator in the sense explained below. We obtain gt(E∗) =[
W−1f(E∗)

]
t
, where

(6) W = A+B, Atr =

∫ ∞

E0

dE bt(E)br(E), ft(E∗) =

∫ ∞

E0

dE bt(E)δσ(E,E∗).

By setting B = 0, the coefficients are expressed in terms of A−1, where A, for the choice
bt(E) = e−tE , is a Cauchy matrix directly related to the Hilbert matrix, a notably ill-
conditioned matrix. It is well known, see e.g., ref. [6], that this results in large oscillations
in gt(E∗), and statistical fluctuations on C(t) then induce large statistical errors on ρ̄σ.
This is a manifestation of the ill-posed nature of the inverse Laplace transform applied
to a finite set of discrete data with statistical error, the case of Lattice QCD. In order
to mitigate this problem, we may regularize the near-zero eigenvalues of A by setting
B 	= 0, adding yet another source of systematic error, besides the one due to tmax < ∞.
In [5, 6] it was proposed to consider B to be proportional to the covariance matrix of
data Cov. In principle, other types of regularizations that do not depend on data can be
employed, e.g., we can consider B = λ1 (Tikhonov regularization) or Btr = λe−Mtδtr,
where λ, aM ∈ [0,∞), so that B → λ1 for aM → 0, and B → 0 for aM → ∞. In
fig. 1(a) we show how the (relative) systematic error on the kernel reconstruction

(7) Δσ(E∗) =

∫∞
E0

dE
[
δσ(E,E∗)− δ̄σ(E,E∗)

]2
∫∞
E0

dEδσ(E,E∗)2
= 1−

∑tmax

t,r=a ft(E∗)[A
−1]trfr(E∗)∫∞

E0
dE δσ(E,E∗)2

(1) Lattice calculations are performed in a finite box and we expect finite-volume effects to be
of O(e−σL) for σ � Mπ [8]. Therefore, a non-zero smearing width is expected to be beneficial.
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a)                                                                                       b)

Fig. 1. – (a) Relative systematic error on the kernel reconstruction Δσ(E∗), see eq. (7). (b)
Statistical errors on ρ̄σ(E∗) at λ∗: σ

max
syst (λ∗, E∗) = 0.02 ∀E∗ for n1 = 1, 10.

decreases as we increase tmax or remove the regulator B. On the other hand, B is needed
to regularize A, taming the statistical fluctuations on ρ̄σ, an effect that is evident in
fig. 2(a). The regulator parameter λ should then be tuned in order to minimize the
statistical fluctuations σstat while controlling the systematic errors σsyst on ρ̄σ, where we
define

(8) σ2
stat(λ,E∗) =

tmax∑
t,r=tmin

gt(E∗)Covtrgr(E∗), σsyst(λ,E∗) = |ρσ(E∗)− ρ̄σ(E∗)|.

Since we do not have access to the true value ρσ, different estimates of σsyst can be given,
see e.g., in refs. [6, 9]. Here we use the following definition:

(9) σsyst(λ,E∗) ≤ ρmax

∫ 6Mπ

2Mπ

dE
∣∣δσ(E,E∗)− δ̄σ(E,E∗)

∣∣ ≡ σmax
syst (λ,E∗),

which is an upper bound on the systematic error for ρσ at small energies, if ρ(E) ≥ 0
∀E and ρ(E) ≤ ρmax ≡ maxE ρ(E) ∀E ∈ [2Mπ, 6Mπ]; preliminary results with λ tuned
so that σstat(λ∗, E∗) = σmax

syst (λ∗, E∗) are presented in sect. 3. A proper analysis without
the restriction of the integral in eq. (9) to 6Mπ is ongoing. A different strategy that is
currently being explored consists in estimating

ρσ(E∗)− ρ̄σ(E∗) =

∫ ∞

E0

dE
[
δσ(E,E∗)− δ̄σ(E,E∗)

]
ρ(E) ≡(10)

∫ ∞

E0

dE δ(1)σ (E,E∗)ρ(E),

by means of a second reconstruction with the smearing kernel δ
(1)
σ (E,E∗).

3. – Multi-level algorithm and spectral densities

In this section, we present preliminary numerical results for the extraction of smeared
spectral densities from lattice correlation functions measured with the multi-level al-
gorithm. In lattice calculations, many physically relevant observables suffer from an
exponentially decreasing signal-to-noise ratio (StN) [10]. If the action and the observ-
able dependence on the field variables can be factorized, e.g., in two local domains as
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Fig. 2. – Reconstruction of ρ̄σ(E∗) at n1 = 1, 10, tuning λ : σstat(λ∗, E∗) = σmax
syst (λ∗, E∗) ∀E∗.

in [7, 11-13], we can alternate n0 independent global (level-0) updates of the field con-
figuration with n1 (level-1) updates of the local regions only. Combining configurations
from different local domains results in an exponential gain in the StN:

(11)
C(t)

σstat(t)
∝ n0 · n2

1 e
−(Mρ−2Mπ)t.

The factorization is straightforward for pure gauge theories [14], and tremendous the-
oretical and numerical progress has been recently made for theories with dynamical
fermions [11-17].

The configurations were generated in ref. [7] for Nf = 2 dynamical O(a)-improved
Wilson fermions on a 96×483 lattice with spacing a = 0.065 fm and pion mass Mπ � 270
MeV, so that MπL � 4.3. The local, unimproved discretization of the vector current was
used, with the value of the renormalization factor ZV at β = 5.3 taken from ref. [18].

First, we study the extraction of ρ̄σ(E∗) at a fixed value of σmax
syst = 0.02 ∀E∗ by

tuning λ accordingly. In fig. 1(b) we show the statistical errors for n1 = 1 and n1 = 10
with a Gaussian kernel of width σ = Mπ � 270 MeV and a regulator of the form
Btr = λe−2Mπtδtr. At a number of configurations which is n1 = 10 times larger, at all
energies we achieve a gain in the statistical errors of ρ̄σ(E∗) which ranges between 25
and 50. The difference from the ideal n2

1 = 100 scaling was already observed in ref. [7]
for the variance of C(t) and is compatible with the presence of a residual correlation
among level-1 configurations. Thus, at fixed systematic error, the multi-level scaling
of the statistical error proves to be advantageous when compared to classical, one-level
(n1 = 1) algorithms at the energies we probe. From the same figure we note that, in order
to minimize the statistical fluctuations while keeping the systematic errors under control
across all energy levels, we should increase or decrease λ at lower or higher energies,
respectively.

Following this last observation, in fig. 2(a) we tune λ so that σstat(λ∗, E∗) =
σmax
syst (λ∗, E∗) for a chosen E∗. We note that n1 = 1 data require a larger value of λ,

thus increasing the overall error. By repeating this tuning for a wider energy range, from
our best data-set at n1 = 10 we obtain the preliminary results shown in fig. 2(b) for
the noticeably small value of the kernel width σ = Mπ � 270MeV. Similarly to other
studies [6,9], we observe an increase of the statistical error with the energy, but with our
multi-level data we observe the presence of a peak, which we fit with a (smeared) Breit-
Wigner ansatz; our preliminary results are compatible with the presence of a resonance
but further refinements are needed to overcome the present limitations of eq. (9) and
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to assess remaining systematic effects, including, e.g., the dependence on the unphysical
pion mass.

4. – Conclusions and outlook

The multi-level sampling strategy has proved to be effective for the reconstruction of
smeared hadronic spectral densities at the energies that we probed. A detailed study
of the scaling properties of the error of ρσ and the study of other channels, such as the
isovector axial and isoscalar vector channels, is deferred to future publications. Here
we presented some preliminary results with a conservative estimate of the systematic
error (especially at lower energies), showing promising results for ρσ with a kernel width
σ = Mπ. Great effort is underway to improve the definition and understanding of the sys-
tematic uncertainties associated to the extraction of smeared spectral densities. Besides
the statistical and systematic errors examined here, finite-volume [8] and discretization
effects will have to be taken into account as well. Finally we remark, as described in
ref. [19], that at physical Mπ one can directly compare Lattice QCD results for ρ̄σ with
experimental hadronic spectral densities smeared with the same kernel.
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