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Summary. — A novel application of lattice QCD spectral reconstruction is pre-
sented, in which Euclidean correlation function data in a fixed time range are used
to infer values outside the range, enabling a model-independent investigation of the
asymptotic large-time behavior. Moments of the correlator are also determined,
and reconstructed correlation matrices between different moments are included in
a variational optimization similar to the standard Generalized Eigenvalue Problem
(GEVP). These ideas are illustrated using a single-nucleon correlation function de-
termined on an Nf = 2 + 1 ensemble of gauge configurations at mπ = 200 MeV.

In a finite spatial volume, the spectrum of QCD is discrete. The energy gaps suggest
a strategy for the study of low-lying states in lattice QCD: take the large-time limit
of Euclidean correlation functions to suppress unwanted excited state contamination.
Solutions of a Generalized Eigenvalue Problem (GEVP) [1] can be used to construct
correlators asymptotically dominated by a single state. However, (nearly) all correlation
functions suffer from an exponential degradation of the signal-to-noise ratio with increas-
ing Euclidean time [2,3]. Unfortunately, in practice, the most precise data at early times
is discarded to fit the large-time region to a few-state ansatz. Choosing the lower bound
for such fits is often delicate: the statistical error can be decreased at the expense of
increased systematic error due to excited state contamination. It is possible that this
interplay is (at least partly) responsible for the long-standing difficulty in reproducing
the experimental value for the nucleon axial charge [4, 5].

A model-independent alternative to discarding the early time data is presented here.
It is based on the spectral reconstruction approach proposed by Backus and Gilbert [6]
and first used in lattice QCD by Hansen, Lupo, and Tantalo [7]. Reference [8] is similar in
spirit to this work and is demonstrably of comparable effectiveness [9]. Other approaches
to spectral reconstruction in lattice QCD are reviewed in ref. [10]. The general problem
of spectral reconstruction employs Euclidean two-point correlator data

C(t) =

∫
dω ρ(ω) e−ωt, ρ(ω) =

∑
n

An δ(ω − En),(1)
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known for integer values of t/a in the range t ∈ [tmin, tmax] with statistical errors.
The direct determination of ρ(ω) from the correlator data is an ill-posed problem,
which can be ameliorated by instead seeking smeared spectral densities of the form
ρ̃[f ] =

∫
dωf(ω) ρ(ω), with a particular smearing kernel f(ω) specified a priori. Previous

applications of ref. [7] use f(ω) to approximate the Dirac-δ distribution [11], Heaviside
step function [12], or implement the principal value prescription [13]. This work however
determines correlator moments, defined as

D(α, τ) =

∫
dω ρ(ω)ωα e−ωτ .(2)

The different symbol emphasizes that τ need not be constrained to the values of t provided
by the data, suggesting that the temporal resolution may be increased with non-integer
τ/a and the asymptotic limit probed with τ > tmax. Furthermore, taking the (rational)
power α different from zero suppresses or enhances excited state contamination. Correla-
tors with different α may be viewed as employing different interpolating operators, which
can accordingly form a correlation matrix for use in a Generalized Eigenvalue Problem
(GEVP).

The reconstruction approach employed here is detailed in ref. [7], with further discus-
sion of the reliable estimation of statistical and systematic errors in refs. [11,14]. Consider
an estimator for D(α, τ) from eq. (2) which is a linear combination of all input correlator
timeslices

D̂(α, τ) =

tmax∑
t=tmin

gt(α, τ)C(t) ≡
∫

dω f̂(ω) ρ(ω).(3)

Evidently D̂(α, τ) is a spectral density smeared with kernel f̂(ω) =
∑

t gt(α, τ) e
−ωt, in

contrast to D(α, τ) which is smeared with f(ω) = ωα e−ωτ . Any difference between f̂(ω)

and f(ω) is a systematic error in the estimator D̂(α, τ). The systematic and statistical
errors are quantified by

A[g] =

∫ ∞

ω0

dω
{
f(ω)− f̂(ω)

}2

and B[g] =
∑
tt′

gtgt′ Cov {C(t), C(t′)} ,(4)

respectively. The coefficients {gt} are chosen to balance these two considerations by
minimizing Gλ[g] = (1 − λ)A[g] + λB[g] for a particular λ ∈ [0, 1]. Small λ results in

a reconstructed kernel f̂(ω) close to the desired one f(ω), but at the expense of large
statistical error. Large λ gives a statistically precise result, but with a large systematic
error due to the difference between f̂(ω) and f(ω). As is customary in lattice QCD data
analysis, an ideal λ is sought in the statistics-limited regime wherein the systematic error
is reliably smaller than the statistical error.

To test these ideas, a single-nucleon correlator from an Nf = 2+ 1 ensemble of gauge
configurations with O(a)-improved Wilson fermions and mπ = 200MeV is employed [15].
This correlator is computed over the time range [tmin, tmax] = [2a, 25a] and was used to
determine the nucleon mass mN in ref. [16]. Further details of the interpolating operators
and measurement procedure can be found there. For the reconstruction, the lower bound
of the integration in eq. (4) is fixed at aω0 = 0.3, and the optimal λ chosen as in ref. [14]
by demanding that the variation of the estimator among a set of reconstructions which



SPECTRAL RECONSTRUCTION OF EUCLIDEAN CORRELATOR MOMENTS IN LATTICE QCD 3

Fig. 1. – Two tests of the correlator reconstruction procedure. Left : using correlator data from
times t/a = [2, 20] to infer D(0, t) at later times and compare with direct measurements of
C(t). The error on the relative difference between these two estimators is computed using the
bootstrap procedure. Right : using times t/a = [2, 25] to infer the effective mass using eq. (5)
with (α, β) = (1, 0). The naive forward-difference definition is also shown for comparison. The
horizontal band is the result of a two-state fit (from ref. [16]) over the horizontal range shown.

impose different constraints is three times smaller than the statistical error. As a first test
of the procedure, a reconstruction is preformed using timeslices [tmin, tmax] = [2a, 20a] to
infer t = 21a, . . . , 25a. The results of this test are shown in the left panel of fig. 1, which
demonstrates that the standard estimator for the correlator and D(0, τ) agree within
1.5σ.

Consider now the family of effective masses

meff(α, β|τ) =
{
D(α, τ)

D(β, τ)

}1/(α−β)

(5)

for which limτ→∞ meff(α, β|τ) = mN ×
{
1 + O(e−2mπτ )

}
. Due to the finite spatial vol-

ume, the lowest non-interacting p-wave state has an energy close to mN+2mπ. The case
(α, β) = (1, 0) coincides with the standard forward-difference effective mass up to O(a2),
while different (α, β) have varying excited state contamination. A second test of the re-
construction procedure is shown in the right panel of fig. 1, which compares the forward
difference effective mass with (α, β) = (1, 0). The reconstructed effective mass is con-
siderably more precise at later times, and asymptotically agrees with the value obtained
from a two-state fit. It should be emphasised, however, that the spectral reconstruction
approach does not impose a model for the time dependence.

Figure 2 shows various (α, β). A significant enhancement or reduction of the excited
state contamination is evident similar to a variation in the level of quark field smearing,
but here achieved for a single correlator. This naturally suggests employing different
moments in a correlation matrix Aij(t) = D(αi + αj , t). Rather than the standard
GEVP, which employs a second metric timeslice t0, the variation optimization is applied
directly to Bij(t) = D(αi + αj + 1, t), using A(t) as a metric. This “equal-time” GEVP
is therefore

B(t)vn(t) = λn(t)A(t)vn(t),(6)

where the eigenvalues λn(t) approach directly the states of interest for large t. The
results from a two-dimensional equal-time GEVP are shown in fig. 3, which shows a
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Fig. 2. – Different definitions of the effective mass by varying α and β in eq. (5). In this manner
the excited state contamination can be suppressed or enhanced relative to the conventional
definition, which employs (α, β) = (1, 0).

further reduction in excited state contamination compared to the input “diagonal” effec-
tive masses. Furthermore, a rough estimate of the first excited state is provided with an
energy near mN + 2mπ. Interactions likely shift the multi-hadron excited states signifi-
cantly from these naive expectations, however.

In conclusion, the reconstruction of correlator moments presented here provides
model-independent determinations of the correlator at arbitrary Euclidean time sepa-
rations. Unlike few-state fits, these estimates employ the entire range of correlator data,
including those at precise early times. However, no miracle has been achieved: the asymp-
totic behaviour shown in figs. 1, 2 and 3 is consistent with a two-state fit and has a similar
statistical precision. Nonetheless, it serves as a valuable model-independent confirmation
of the two-state ansatz over the limited time range of input correlator data. In addi-
tion to the investigation of large-time asymptotics detailed here, the model-independent
interpolation of correlator data may be useful in the comparison of lattice QCD vector-
vector correlators and smeared experimental R-ratio data. It is likely that this approach
can also be extended to treat the simultaneous reconstruction of multiple correlation
functions in analogy to the ratios constructed to determine energy differences, as well as
three-point correlation functions.

Fig. 3. – The eigenvalue λn(t) from a two-by-two GEVP as in eq. (6) with {α1, α2} = {−0.5, 2}.
The lower horizontal band is the two-state fit from ref. [16], as in fig. 1. The right panel is
zoomed out to show λ1(t), and the upper horizontal band is mN + 2mπ.
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