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Summary. — Based on the constraint formalism for the Dirac equation (Crater

H. W. andVan Alstine P., Phys. Rev. D, 30 (1984) 2585; 36 (1987) 3007) the two-
body system in a strong uniform magnetic field is considered. In the framework of
such an approach the ground state of a quarkonium is studied in detail. The energy
of the ground state level of a quarkonium strongly depends on the quark mass and
on the value of the magnetic field strength. It is shown that strong magnetic fields
sufficiently decrease the quarkonium life-time compared with the zeroth magnetic
field case.

1. – Introduction

Influence of a strong magnetic field on the dynamics of physical processes is important
in studying the non-central high-energy collisions of heavy ions. The value of magnetic
field strength is estimated to be about B ∼ 1018–1019G at RHIC and LHC energies [1-3]
which is of the order and more than the squared pion mass. Magnetic fields play a key
role in forming signals from the interior area of neutron stars [4] where the magnetic field
strength turns out to be of the same order.

Quarkonium states in a magnetic field are considered [5] in detail in the non-relativistic
approach in studying the bottonium and charmonium states. However, researching an
annihilation process, which is a very important source of information about the strong
interacting matter, demands the relativistic consideration since an annihilation takes
place when a particle and anti-particle are at an extremely short distance from one
another.

In the present paper we study the ground state of a quarkonium in a uniform strong
magnetic field, based on the Dirac constraint dynamics [6]. Neglecting the vacuum
polarization by a magnetic field the equations governing such a state are derived and
studied in detail. The influence of a magnetic field on a quarkonium state is found to
depend strongly on its mass that manifests itself in two aspects. They are the value of the
quarkonium energy level itself and the dependence of such an energy level on a magnetic
field. It is shown that a strong magnetic field leads to decreasing the quarkonium life-
time due to the compression of a quarkonium state in the plane which is perpendicular
to the magnetic field direction.
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2. – Quarkonium states in a homogeneous magnetic field

We consider a quark-antiquark pair which is in either the (S = 0, Sz = 0) or
(S = 1, Sz = 0) spin state, assuming that a quark and antiquark interact by means
of the Cornell potential [7]

(1) U(r) = −4πα2
s

3r
+ σr + CS ,

where r is the radius-vector of the relative motion of a quarks and antiquark, αs is the
strong interaction coupling constant whose typical value is inside the range 0.19 ≤ αs ≤
0.4; σ � 0.18GeV2 is the QCD string tension; CS � ∓0.3GeV is the constant coming
from the spin-spin interaction term, where the upper and down signs correspond to the
spin states (S = 0, Sz = 0) and (S = 1, Sz = 0), respectively. Such a written spin-spin
interaction term, ignoring the exponential factor exp(−βr), means the upper estimation
of this term value.

Let a quark-antiquark pair be in a uniform magnetic field B = Bez directed along the
OZ axis. When a quarkonium consists of a quarks-antiquark pair of the same flavor a
homogeneous magnetic field does not affect the center mass motion. Therefore, to study
the quarkonium ground state in a magnetic field we modify the equations of the constraint
Dirac dynamics [6], having added a vector potential Aμ = (0,A) = (0, 1

2 (B × r)) to
the parapositrinium motion equation [8]. Beside that, we also change the Coulomb
potential [8] which is the zeroth component of the vector interaction Aμ = (U, 0) of two
particles by the Cornell potential given by eq. (1), and take into account the spin-mixing
effect [5], introducing ΨS(r) function which corresponds to the spin states (S = 0, Sz = 0)
or (S = 1, Sz = 0). As a result, we obtain the closed set of equations in the center mass
frame

(
�+ 2U(r)Ew − U2(r) +

ieq
2
(B× r)∇− 1

4
e2qB

2r2⊥

)
ΨS(r) + (eqB)Ψ(1−S)(r)(2)

= (m2
w − E2

w)ΨS(r); S = 0, 1;

where Ew = (Eq − m2
q/2Eq), mw = m2

q/2Eq; mq and eq > 0 are the mass and electric
charge of a quark, whereas Eq is the energy of a quark-antiquark pair in the center mass
frame. Above, we also have introduced the cylindrical coordinates for the relative motion
radius-vector r = r⊥ + ezz. The function ΨS(r) is assumed to be normalized by unit.

We study the ground singlet state of a quarkonium in a strong magnetic field B when
the magnetic length a = (eqB)−1/2 is small, so that

(3) max(aσ1/2;αsEwa; |CS |a) � 1.

Such an inequality occurs at the magnetic fields B 	 1016G which are achieved in
non-central heavy ion collisions [1-3] and in astrophysical objects [4].

The wave function of the ground state of a charged particle in a magnetic field which
governs its transverse motion is [9]

(4) ψm=0,n=0(r⊥) =
1

a
√
2π

exp
(
− r2⊥
4a2

)
,
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where m is the projection of an angular momentum onto the B-direction, n is a radial
quantum number. We look for the solution of eq. (2) in a form

(5) ΨS(r) = ψS(z) ψm=0,n=0(r⊥).

Substituting ΨS(r) given by eq. (5) into eq. (2), we derive

(6)
( d2

dξ2
+ 2U (1)(ξ) aεwmw − a2U (2)(ξ)

)
ψS(ξ) = ε2SψS(ξ),

where z/a ≡ ξ, (m2
w − E2

w)a
2 + 1 + (−1)S+1 ≡ ε2S , εw = Ew/mw, and

(7) U (λ)(ξ) =

〈
ψ∗
m=0,n=0(r⊥)

∣∣∣∣∣
(
−4πα2

s

3r
+ σr + CS

)λ
∣∣∣∣∣ψm=0,n=0(r⊥)

〉
, λ = 1, 2.

We study solutions of eq. (6) in the cases of light and heavy quarks.

2
.
1. Light quarks . – Let us consider quarks whose masses are mq � 1GeV. They are

the u-, d-, s-quarks. In this case the second term in eq. (1) dominates in order to form
the particle bound state with respect to a motion along the OZ axis. Then, the equation
determining the ground state of a pair is

(8)
( d2

dξ2
− a4σ2ξ2

)
ψS(ξ) = ε2SψS(ξ),

where we neglect the last term in eq. (1) which is small in this case. This is the well-known
linear oscillator equation whose solution is given by the formula

(9)
ψS(ξ) =

(
a2σ

π

)1/4

exp (−a2σξ2/2), ε2S = −a2σ + (−1)S+1,

E2
w = m2

w + σ + a−2(1 + (−1)S+1).

This result means that the energy levels of light quarks which correspond to the
quarkonium ground state lie below the main Landau level En=0,m=0 =

√
m2

w + a−2

because of the inequality (3).

2
.
2. Heavy quarks . – When a quark mass is more than mq = 1GeV the first term

in eq. (1) mostly governs the quark-antiquark interaction. In this case eq. (6) takes the
form

( d2

dξ2
+ 21/2

√
π(4παs/3)mwεwae

ξ2/2erfc(|ξ|/
√
2)(10)

+
(4παs/3)

2eξ
2/2

2
E1(ξ

2/2)
)
ψS(ξ) = ε2SψS(ξ),

where erfc(x) is the complementary error function, E1(x) is the integral exponent [10].
Since the considered magnetic field is strong, a particle is weakly bound as for a

motion along the OZ axis. Therefore, we look for solutions of eq. (10) in the form

(11) ψS(ξ) =
√

kS exp(−kS |ξ|),
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where kS =
√
εS is a positive constant.

Substituting such ψS(ξ) given by eq. (11) into eq. (10) we derive the equation to find
kS ,

kS =23/2
√
π(4παs/3)mwεwa

∞∫
0

dξ exp (ξ2/2− 2kSξ)erfc(ξ/
√
2)(12)

+ (4παs/3)
2

∞∫
0

dξ exp (ξ2/2− 2kSξ)E1(ξ
2/2).

The validity of the derived equation is restricted to small kS � 1. At such kS ,
the second integral [10] is approximately π3/2/

√
2, whereas the first integral can be

approximately taken to be ln(aB/a)/
√
π [9] after the dimensional regularization, where

aB = 4π/3mqαs. As a result, we find

(13) kS = 23/2(4παs/3)mwεwa ln(aB/a) + (4παs)
2π

3/2

√
2
.

In the non-relativistic case mqa 	 αs we obtain kS = 23/2(4παs/3)mqa ln(aB/a),
that taking into account eq. (13) results in

(14) Ew =
mq

2

(
1 +

2(1 + (−1)S+1)

(mqa)2
− 2(4παs/3)

2 ln2(aB/a)
)
.

The derived Ew agrees with the results obtained earlier [5] (see figs. 3, 4 at <
Pkinetic >= 0), demonstrating the approximately linear growth of (2Ew −mq)/mq with
increasing a magnetic field for the triplet state S = 1. The growths become slower with
decreasing B.

In the opposite limiting situation mea � αs, but provided that the vacuum polar-
ization effects in a strong magnetic field are absent [11], we get kS = 9(2π)7/2α2

s, that
gives

(15) Ew � 1

a2
((1 + (−1)S+1)− (2π)7α4

s/162).

The obtained Ew sufficiently differs from the results which have been derived above
in the non-relativistic case. Equations (14), (15) show the stronger a magnetic field,
the less the level depth of the ground quarkonium state under the bottom of the main
Landau zone.

3. – Influence of a strong magnetic field on a decay width

A decay width Γ is proportional to [12]

(16) Γ � |ψ(0)|2
M2

,

where ψ(0) and M are the wave function and mass of a decaying particle, respectively.
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According to eqs. (4), (9), (11) the squared wave function |ψ(0)|2, depending on the
quark mass, is of the order of

(17)
|ψB=0(0)|2 ∼ σ3/2, |ψB �=0(0)|2 ∼ σ1/2

a2
(light quarks),

|ψB=0(0)|2 ∼ a−3
B , |ψB �=0(0)|2 ∼ 1

aBa2
(heavy quarks).

The estimations presented by eq. (17) show that a strong magnetic field leads to
sufficient increasing the decay width, as compared with the case B = 0, in 1/(σa2) 	 1
or in (aB/a)

2 	 1 times, depending on the quarkonium mass. Such a behavior of the
decay width in a magnetic field is a result of the additional compressing of the quark-
antiquark state by a magnetic field in the plane which is perpendicular to theB-direction.

4. – Conclusion

The ground state of a quarkonium in a strong magnetic field is studied, taking into
account the spin-mixing effect. The energy level of the ground state of a quarkonium is
found to be always below the main Landau level, while the energy of this state depends
strongly on both the quark mass and magnetic field strength. We show that a strong
magnetic field essentially decreases the quarkonium life-time as compared with the case
of B = 0.
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