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Amplitude analysis tools at BESIII
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Summary. — Many amplitude analysis tools have been used at BESIII. The new
amplitude analysis tool TFPWA is developed to cover new requirements, and, for
a general framework, to do the amplitude analysis automatically, efficiently and
conveniently. Many new technologies are used especially automatic differentiation.
TFPWA has been already used in BESIII and shows good performances.

1. – Introduction

In the field of particle physics, there are numerous particles that we study and of
which we analyze the interactions. One useful technique for studying these interactions
is amplitude analysis or, as it is often named, partial wave analysis (PWA). We construct
an amplitude model to describe the interactions, which represents the probability density
of the 4-momentum for particles. And then we can use it to fit the data. Based on the
model components and the parameters, the interesting information of the interactions
can be extracted. For example, we can determine the necessary new states and their
properties. And we can use them to understand the variation over the phase space, such
as charge-parity violation.

Table I shows the amplitude analysis tools used in BESIII. Many of the previous tools
are hand-coded and not so easy for other processes. Deep understanding of the formula is
required. We propose a general amplitude analysis tools, TFPWA. It aims for automatic
and powerful framework of PWA.

The code is open source at https://github.com/jiangyi15/tf-pwa.

2. – Framework

The main problem of PWA is to build a model which can describe the real data. The
common parts for models are the particles included and the decays that can happen.
Usually, we have one initial particle and some final particles. One particle can decay into
two particles. This condition is often called isobar model. The initial particle and final
particles are specified. Particles between initial particle and final particles can be added
to connect them. The main properties of those particles are their spins, parities, masses
and widths. It can be represented as a simple dict. The decay can be represented as a
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Table I. – Amplitude analysis tools in BESIII.

Tools Comment Example

closed source/hand coded – D+ → K0
Sπ

+π0π0 [1],e+e− → ωπ+π− [2]
GPUPWA [3] tensor formalism J/ψ → γηη [4],J/ψ → γηη′ [5]
FDC-PWA [6] tensor formalism ψ′ → pp̄η [7],e+e− → pK−Λ̄ [8]
TFPWA (this work) helicity formalism Λ+

c → Λπ+π0 [9]
from other experiments – χc1 → ηπ+π− [10], D0 → KSK

+K− [11]

tuple of the input particle and output particles with some additional information in a
dict. They are the simple configuration of the model. In TFPWA, we used YAML [12]
format to store that configuration in a file. That makes the configuration file simple.
The YAML file is easy to read, write and modify for different processes.

The model is built from this configuration as a tree structure in fig. 1.
TFPWA uses the helicity formula (fig. 1 decay) to calculate the amplitude A0→1+2

λ0,λ1,λ2

of one decay where particle 0 decays to particle 1 and particle 2. λi is the helicity of
particle i. H0→1+2

λ1,λ2
is helicity coupling that includes our fit parameters for the model.

DJ
m,m′(α, β, γ) is the Wigner-D function. φ, θ is the helicity angle that is calculated from

4-momentum (pμi ).
The full process has different decay chains including different resonances or different

structure. Each decay chain has some decays connecting initial particle and final parti-
cles. The amplitude of such decay chain is the combination of all decays included and
the shape of inner particles (fig. 1 decay chain). R1(m1) is the amplitude of particle 1
that is dependent on the invariant mass. More decays can be added in the same way.

All the decay chains are stored in a decay group. The total amplitude is the sum-
mation (fig. 1 decay group). The probability density function (PDF) of the process is
proportional to the absolute square of the amplitude.

The main point of the calculation is combining different parts of amplitudes together.
TFPWA provides an implementation of that combination (fig. 1 decay chain) as a tree
traversal. TensorFlow [13] with GPU support is used for the calculation. It can be used
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initial particle: 1 or polarization ρ = 1 + �p · �σ.
resonances: R(m) = 1

m2
0−m2−im0Γ(m)

.

final particles: alignment DJ∗
λ′,λ(α, β, γ).

decay: A0→1+2
λ0,λ1,λ2

= H0→1+2
λ1,λ2

DJ∗
λ0,λ1−λ2

(φ, θ, 0).

decay chain: A0→1+2,1→3+4
λ0,λ2,λ3,λ4

=
∑

[λ1],λ′
j
A0→1+2

λ0,λ1,λ′
2

[
R1(m1)A

1→3+4
λ1,λ′

3,λ
′
4

]
∏

j D
J∗
λj′ ,λj

(αj , βj , γj).

decay group: A0→2+3+4
λ0,λ2,λ3,λ4

= A0→1+2,1→3+4
λ0,λ2,λ3,λ4

+A0→5+3,5→2+4
λ0,λ2,λ3,λ4

+ · · · .

probability density function: fsig(p
μ
i ) =

∑
λ0,λ2,λ3,λ4

|A0→2+3+4
λ0,λ2,λ3,λ4

|2.

Fig. 1. – Amplitude model in TFPWA.
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in any body decays. TFPWA provides a plugin system for new models. All models will
be stored in a global dict. A new model can be added simply through a series of register
function. An interface for customizing models is the key point for general framework.

The default model for H0→1+2
λ1,λ2

uses the LS coupling formula

(1) H0→1+2
λ1,λ2

=
∑

l,s,δ=λ1−λ2

gl,s

√
2l + 1

2j0 + 1
Cj0δ

l0;sδC
sδ
j1λ1;j2−λ2

qlBl(q, q0, d).

Cj0m0

j1m1;j2m2
is the Clebsch-Gordan coefficients. q(q0) is the breakout momentum in the 2-

body rest frame calculated though 4-monumenn (or calculated though resonance mass).
Bl(q, q0, d) is the a Blatt-Weisskopf barrier factor [14-16]. d = 3.0 GeV−1 is set as default.
The factors gl,s are complex number fit parameters.

The default model for R(m) is a simple Breit-Wigner (fig. 1 resonances) with running
width

(2) Γ(m) = Γ0
m0

m

(
q

q0

)2l+1

B2
l (q, q0, d).

The minimal l is used to keep the sample shape for resonances. Mass (m0) and width
(Γ0) can be the fit parameters which are determined by the fit.

The input data for each part is different. Structured data are used as input. TF-
PWA provides an algorithm to calculate the angle (θ, φ, α, β, γ) automatically through
4-momentum. The alignment angle (α, β, γ in fig. 1) calculation is a full automatic im-
plementation of [17]. An additional D matrix with the alignment angle is added to align
the helicity of each final particle separately.

The direct calculation process in fig. 1 is robust, but not efficient in all the cases.
TFPWA provides additional factor system to calculate the amplitude as

(3) Ai =
∑
i

cifi(m)Ti(θ, φ).

The factors ci are some combinations of gl,s. fi(m) are the mass-dependent parts. Ti(θ, φ)
are the angle parts which are always independent of the fit parameters.

3. – Automatic differentiation

The fit process is to minimize the negative log-likelihood eq. (4). The signal distribu-
tion is the amplitude square. And the background distribution is a fixed distribution

(4) − lnL = −
∑

x∈data

ln

(
fsig(x)

Isig
+

fbg(x)

Ibg

)
.

Isig/bg =
∫
fsig/bg(x)dx is the normalised factor. Due to the complex formula of ampli-

tude model and phase space (PHSP) distribution, such integration is difficult to solve
analytically. Large size of Monte Carlo (MC) sample is required to do the numerical
integration as Isig/bg = 1/N

∑
x∈MC fsig/bg(x).

To minimize the − lnL, minimize function provided by scipy.optimize [18] is used
in TFPWA. It provides a better control of the minimization in Python. This function
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mainly uses the quasi-Newton method, which required gradients to do the minimization.
Automatic differentiation (AD) [19] is a widely used technology to calculate the gradients
efficiently through recording the operations of variables and combining the Jacobi ma-
trix of those operations. TensorFlow provides the implementation of AD with complex
number support.

However it is not so straightforward to use AD in PWA. Recording the operations
requires large memory. When the number of events becomes large, especially for the MC
sample, it causes the problem “out of memory”. The total samples have to be divided
into small batches. TFPWA provides a way to calculate the gradients in small batches
and combine them into the total − lnL. Special treatment is required for Isig that is
not direct for batches. Isig itself can be rewritten into the sum of different batch sizes as
eq. (5), and extend the AD with batch formula too,

Isig =
∑

xi∈batch1

fsig(xi) +
∑

xi∈batch2

fsig(xi) · · · ,(5a)

∂

∂x
Isig =

∂

∂x

∑
xi∈batch1

fsig(xi) +
∂

∂x

∑
xi∈batch2

fsig(xi) · · · .(5b)

And in the gradients of total − lnL, Isig can be extracted from the gradients as two
parts,

(6) −∂ lnL(x)

∂x
= −∂ lnL(x; Isig)

∂x
− ∂ lnL(x; Isig)

∂Isig

∂Isig
∂x

.

This formula is used to build the total gradients out of the AD system of TensorFlow.
It extends the power of AD in any scale of data sets in PWA.

Besides minimizing the − lnL, AD can be also used for the uncertainties estimation.
The Hessian matrix can be calculated simply thought AD. And AD can also be used in

the error propagation as σ[f(x)] =
√

∂f
∂xi

Vij
∂f
∂xj

. Vij is the error matrix of parameters.

This formula propagates the uncertainties from fit parameters to f(x). For example, the

fit fraction of one decay chain can be calculated as FFi =
∫
|Ai|2dΦ∫

|
∑

i Ai|2dΦ . The gradients

can be easy to access through AD. Then the uncertainties can be evaluated smoothly.

4. – Performance

TFPWA has already been used in some amplitude analysis at BESIII (Λ+
c → Λπ+

π0 [9]) and LHCb (B+ → D+D−
s π

+ [20,21]) experiments. Figure 2 shows the main time
components for the normal fit in (Λ+

c → Λπ+π0 [9]). This simultaneous fit includes 7
separate data samples and a total of 8.5 × 105 MC samples(1). The main component
is the time for minimizing − lnL (fit). Besides, time is required for loading data and
visualising the fit results (uncertainties, plots and fit fractions).

Different options are tested. “No option” is the default one. “Mixed likelihood” mixes
the 7 separate samples together. “Mass dependent” caches the Ti parts in eq. (3). It
will increase the memory costs. “Factor only” caches the fiTi in eq. (3), and rewrites

(1) The code is available at https://github.com/jiangyi15/tf-pwa-example.
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Fig. 2. – Fit time components in Λ+
c → Λπ+π0 [9] for different options.

the integration into Isig =
∑

i,j cic
∗
jBiB

∗
j . It is the best one for fit but limited to the

condition that fi are not dependent on fit parameters. A full fit costs about 200 to 300
iterations. Caching will cost much more time than a simple evaluation.

5. – Summary

In conclusion, we propose a general partial wave framework, TFPWA. TFPWA uses
YAML format to configure different decay processes. The tree structure allows amplitude
calculation automatically. An interface for customizing models is available. It uses
powerful AD to do PWA efficiently, and extend it to large data size samples. To balance
the performances, different options are provided. It has already been used in real analysis
and produced meaningful results. More useful functions will be implemented in the
future.
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