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Spin-1 quarkonia in a rotating frame and their spin contents
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Summary. — We propose a new way of studying the spin content of a hadron
by looking at its response in a rotating frame. By collecting all responses of quarks
and gluons in a rotating frame, we describe the spin-rotation coupling of spin-1
quarkonia and thereby reveal their spin contents in a relativistic formalism.

1. – Introduction

The reaction of particles with spin in a rotating frame has been of interest for a long
time since the mid 1910s, when it was realized that mechanical rotation can polarize
particle spins through the Barnett effect [1]. This effect is understood by spin-rotation
coupling and recently led to new wave of active research field such as measurement of
the spin polarization of hadrons in heavy-ion collisions. In this work, we propose a new
method to study the spin content of a hadron by examining its response in a rotating
frame, and as a first step, we investigate the spin contents of spin-1 quarkonia.

Let us first consider two reference frames: an inertial frame and a (non-inertial)
rotating frame which rotates with an angular velocity Ω with respect to the inertial
frame. Then, for a classical particle, the Hamiltonian in the inertial frame (Hi) and the
Hamiltonian in the rotating frame (Hr) are related by Hr = Hi −L ·Ω, where L is the
orbital angular momentum of the particle. For a particle with intrinsic spin, it seems
natural to generalize this relation to Hr = Hi− (L+S) ·Ω. For spin-1/2 Dirac particles,
this relation can be explicitly derived from the Dirac equation in a rotating frame,

[iγμDμ −m+ γ0(L̂q + Ŝq) ·Ω]Ψ = 0,(1)

where Dμ = ∂μ+ igAμ is the covariant derivative and L̂q = x×(−iD) and Ŝq = 1
2γ

0γ γ5

are the orbital and spin angular momentum operator for Dirac fields, respectively. On
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the other hand, recent research by Kapusta et al. [2] explored spin-rotation coupling
for massive spin-1 particles using the Proca equation in a rotating frame, revealing an
unexpected reduction of the Hamiltonian to Hr = Hi−(L+ 1

2S)·Ω in the non-relativistic
limit. Consequently, it becomes crucial to establish the strength of spin-rotation coupling
for spin-1 particles in a model independent way based on Quantum Chromodynamics
(QCD).

2. – Method

In this work, we introduce a free parameter gΩ, so-called gravitomagnetic moment
in [3], which represents the strength of the spin-rotation coupling for spin-1 system
composed of a heavy quark and its anti-quark. To derive the value of gΩ on the basis
of quarks and gluons degrees of freedom, let us first consider a two-point correlation
function for the vector or axial vector current,

Πμν(q) = i

∫
d4xeiqx〈0|T[jμ(x)jν(0)]|0〉.(2)

For simplicity, we put the system at the center of the rotation and pick out a right
circularly polarized state with ε+μ = (0, 1, i, 0)/

√
2 in the rotating frame in which the

polarization axis and the angular velocity are along the same z-direction, i.e., qμ = (ω, 0)
and Ω = (0, 0,Ω). Since we are mainly interested in the terms linear in Ω, the relevant
component is defined as Π+(ω) = Πμν(ω, 0)ε+μ ε

+∗
ν = ω2Πvac(ω2) + ωΩΠrot(ω2) where

Πvac(ω2) is the vacuum invariant function and Πrot(ω2) is a new function appearing in
the rotating frame.

Now let us discuss the phenomenological structure of Π+(ω). In an inertial frame,
Π+(ω) = ω2Πvac(ω2). Once we turn on the rotation, the energy of a right circularly
polarized state is shifted by −gΩΩ. Therefore Π+(ω) → Π+(ω + gΩΩ) in the rotating
frame. Then we can infer a simple relation between Πvac(ω2) and Πrot(ω2),

Πrot
phen(ω

2) = 2gΩ

{
Πvac(ω2) + ω2 ∂Π

vac(ω2)

∂ω2

}
.(3)

To compute the OPE in the rotating frame, we first need quark propagators in that
frame. Referring to eq. (1), we use the following expansion of the quark propagator:

S(x, 0) =S(0)(x) +

∞∑
n=1

(−1)n
∫

dz1 . . . dznS
(0)(x− z1)(4)

×
[
ΔI(z1)

]
S(0)(z1 − z2) . . .

[
ΔI(zn)

]
S(0)(zn),

where S(0)(x) is the free quark propagator and ΔI = g /A+γ0((L̂q)z+(Ŝq)z)Ω includes all
the interaction terms. For convenience, we also distinguish the orbital angular momentum
operator into two pieces, L̂q = L̂k + L̂p, where L̂k = x× p is the kinetic part and L̂p =
x× (−gA(x)) is the potential part, respectively. Furthermore, gluon fields appearing in
the interaction terms are also modified by the rotation. Within Fock-Schwinger gauge
(xμAμ(x) = 0), the gluon field in the rotating frame is expressed as

Aμ(x) =− 1

2
xνGμν(0)−

1

3
xνxα(Γρ

αμGρν(0) + Γρ
ανGμρ(0)) + . . . ,(5)
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where Γρ
μν denotes the Christoffel symbol. We then denote the contribution of Ω linear

terms in eq. ((5)) as Ĵg because we later found that the sum gives the same contribution

with the gluon’s total angular momentum operator, Ĵg = x × (E ×B), refering to [4].
By collecting terms linear in Ω, we compute the OPE upto operators of dimension 4,

Πrot
OPE(Q

2) =
∑

i=Sq,Lk,Lp,Jg

Πrot
I,i (Q

2) + Πrot
G0,i(Q

2),(6)

where Πrot
I,i denotes the leading perturbative part and Πrot

G0,i
= Ci(Q

2) · G0 denotes the

leading non-perturbative part with Ci(Q
2) as the Wilson coefficients for the scalar gluon

condensates G0 ≡ 〈αs

π Ga
μνG

a,μν〉 = (0.35GeV)4. Conventionally, these coefficients are

expressed using JN (y) =
∫ 1

0
dx[1 + x(1− x)y]−N , where y = Q2/m2.

3. – OPE results

For vector channel,

ImΠrot
I,Sq

(s) =
3m2

2π
√
s(s− 4m2)

,(7)

ImΠrot
I,Lk

(s) =
(s−m2)

√
s(s− 4m2)

2πs2
,(8)

CSq
= −2− y + 12J2 − 26J3 + 12J4

12Q4
,(9)

CLk
=

11− 4y − (8 + y)J1 + 13J2 − 16J3
72Q4

,(10)

CLp
= −13 + 2y − (12 + 5y)J1 + 3J2 − 4J3

72Q4
,(11)

CJg
=

13− (2 + 2y)J1 − 23J2 + 12J3
36Q4

.(12)

For axial vector channel,

ImΠrot
I,Sq

(s) =
3m2

√
s(s− 4m2)

2πs2
,(13)

ImΠrot
I,Lk

(s) =
(s−m2)

√
s(s− 4m2)

2πs2
,(14)

CSq
= −6− y − 12J2 + 6J3

12Q4
,(15)

CLk
=

7− 4y − (8 + y)J1 + 25J2 − 24J3
72Q4

,(16)

CLp
= −9 + 2y + (4− 5y)J1 − 17J2 + 4J3

72Q4
,(17)

CJg
=

1 + (6− 2y)J1 − 3J2 − 4J3
36Q4

.(18)
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By comparing these results with the counterparts of the vacuum OPE, we indeed
find gΩ = 1 for both channels. In fact, what we computed in the OPE is equiv-
alent to the expectation value of the total angular momentum operator in QCD,
JQCD =

∫
d3x( 12 ψ̄γγ5ψ + ψ†(x × (−iD))ψ + x × (E × B)) [5]. Similarly, what we

considered in the phenomenological side is nothing else but the expectation value of
gΩS ·Ω where S is the spin-1 operator. Therefore, our finding, i.e., gΩ = 1, just confirms
that the total spin of the system is equal to the total angular momentum of quarks and
gluons.

4. – Spin contents of spin-1 quarkonia

The above findings can be utilized to calculate the spin contents of spin-1 quarkonia
such as J/ψ, Υ(1S), χc1, and χb1. ImΠvac(s) represents the spectral density in which
all physical states that can couple to the vector or axial vector current are involved.
In order to pick out the ground state, it is often modeled as ImΠvac(s) = πf0δ(s −
m2

0) + θ(s− s0)ImΠvac
I (s) where f0 is the residue, m0 is the ground state mass, s0 is the

continuum threshold. Then the fraction of gΩ for the ground state can be extracted from
the following equations:

gΩ(M, s0) = −M2

2

M̄rot

∂M̄vac/∂(1/M2)
,(19)

M̄vac = B
[
Πvac

OPE(Q
2)
]
−
∫ ∞

s0

dse−s/M2

ImΠvac
I (s),(20)

M̄rot = B
[
Πrot

OPE(Q
2)
]
−
∫ ∞

s0

dse−s/M2

ImΠrot
I (s).(21)

Here, Borel transformation is defined by

B ≡ lim
Q2/n→M2,

n,Q2→∞

π(Q2)n+1

n!

(
− d

dQ2

)n

.(22)

In an actual analysis, we need to specify an effective threshold (s̄0) and a reliable range
of Borel mass (M), so-called Borel window. The values of s̄0 and Borel window used
in this work are listed in table I; see [6-8] for more details. For input parameters, we
use mc(p

2 = −m2
c) = 1.262GeV, αs(8m

2
c) = 0.21 for charmonia and mb(p

2 = −m2
b) =

4.12GeV, αs(8m
2
b) = 0.158 for bottomonia following [6].

Table I. –
√
s̄0 and Borel window for spin-1 quarkonia.

J/ψ χc1 Υ(1S) χb1

√
s̄0 [GeV] 3.5 4.0 10.3 11

(Mmin,Mmax) [GeV] (1,2.3) (1.4,2.3) (3,5.5) (3.6,4.9)
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Table II. – The spin contents of spin-1 quarkonia.

J/ψ Υ(1S) χc1 χb1

Sq 0.881.8e-4 0.927.6e-5 0.408.2e-5 0.431.1e-5
Lk 0.114.9e-4 0.0767.8e-5 0.615.8e-6 0.571.0e-5
Lp 2.0e-32.9e-6 3.5e-53.0e-10 8.2e-42.3e-8 –1.0e-53.4e-10
Jg 8.0e-35.9e-5 1.5e-47.3e-9 –0.0155.2e-5 –5.2e-52.3e-8

Then we finally estimate the spin contents of the spin-1 quarkonia by averaging the
contribution of each angular momentum operator in gΩ(M, s̄0) over the given Borel win-
dow. We also calculate the variance of each contribution to estimate the uncertainty.
The average values and their uncertainties (subscript) are listed in table II. In all cases
the sum of the four components is exactly 1 as we expected, but the spin contents are
quite different from each other. While the bottomonia results are somewhat comparable
with the non-relativistic quark model picture, the spin contents start to deviate from
this picture as the quark mass becomes lighter. For example, the J/ψ is traditionally
considered as an S-wave particle but now we find that the quark spin does not carry all
of the total spin as in the case of the proton spin [9].

5. – Summary

We have proven that gΩ = 1 for heavy composite particles with spin-1 and simulta-
neously have identified how the angular momenta of quarks and gluons add up to their
total spin in a relativistic way. The most crucial finding in this work is the discovery
of the universal formula in the OPE, which is given by a simple relation between the
rotating frame part and the corresponding inertial frame part. Because this relation
indicates that the total spin of the system is equal to the total angular momentum of its
constituents, the methodology outlined in this study holds the potential to be extended
to other systems, offering insights into their spin contents.
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