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Summary. — We review recent progress on the numerical determination of the
Hadronic Light-by-Light contribution to the anomalous magnetic moment of the
muon. We advocate for a slight increase of the White Paper number for its Standard
Model prediction, to (102± 17)× 10−11, accounting for a revised contribution from
axial-vector mesons and short-distance constraints. This ∼ 10% larger result seems
to be supported by the most recent lattice QCD evaluations.

1. – Why does it matter?

The Standard Model (SM) uncertainty on the muon g−2 (2aμ = gμ−2) is dominated
by the hadronic vacuum polarization (HVP) piece, amounting to 4.0 × 10−10 (for an
overall error of 4.3 × 10−10) [1](1). This is contributed very mildly by the error of the
Hadronic Light-by-Light (HLbL) scattering part, 1.9×10−10, that we will discuss here(2).
Clearly, the most urgent thing is to clarify the discrepancy between the data-driven re-
sults [1-5] and the competitive lattice QCD evaluation, by the BMW Collaboration [6], of
aHVP
μ . To this end, several approaches have been developed, exploiting the so-called win-

dows in Euclidean time [7-17]. Reference [16] (based on the isospin-breaking corrections

(1) These and the following numbers are quoted —unless otherwise stated— from the White
Paper of the Muon g − 2 Theory Initiative [1] (WP), a collaboration which has been aiming
for a community consensus value of the Standard Model prediction of the muon g − 2, see
https://muon-gm2-theory.illinois.edu/.
(2) See talks focusing on diverse aspects of the HVP contribution by Matthia Bruno, Christoph

Redmer, Francesca de Mori, Álex Miranda, Camilo Rojas and David Dı́az Calderón.
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computed in ref. [18]), points to nice agreement between data-driven predictions using
τ− → π−π0ντ data [19-22] (instead of e+e− → π+π− measurements) with lattice QCD
evaluations. The barely acceptable discrepancy between KLOE [23-27] and BaBar [28,29]
e+e− → π+π− data has been aggravated by the new CMD-3 measurement [30], being
this puzzle still not understood (see also, e.g., the measurements [31-33]). Amid this
conundrum, halving the error of the SM prediction for aHLbL

μ [1] is still necessary, ac-
cording to the final precision that the Fermilab experiment will achieve measuring aμ,
but not the top priority.

On the contrary, the experimental situation seems crystal-clear: FNAL measure-
ments [34,35] are extremely consistent with the BNL outcome [36] and their joint picture
is fully convincing, yielding

(1) aExp
μ = 116592059(22)× 10−11.

This situation further enhances the pressing need for theoretical progress.

2. – Why such a large error for aHLbL
μ ?

The outsider may wonder why the uncertainty of the aHLbL
μ is O(20%), while that of

the aHVP
μ is only O(0.6)%. This much better precision stems from its calculation via a sin-

gle dispersive integral that is related to the accurately measured σ(e+e− → hadrons) [37]
plus a mild contribution from perturbative QCD. On the contrary, a data-driven ap-
proach to aHLbL

μ is very much complicated by the additional loop and multi-scale nature
of the problem. Despite enormous advances towards a fully dispersive computation of
aHLbL
μ [38-43], a completely dispersive evaluation is not feasible yet. This framework

provided a rationale for the historical arrangement of the main contributions (starting
from the dominance of the pseudoscalar-pole cuts [44]) and could in principle be used up
to arbitrary complex multiparticle ones.

3. – Contributions

Amazingly, the whole aHLbL
μ is basically saturated by the contribution from the lowest-

multiplicity cut (even more so because of the approximate cancellations among the other
contributions), corresponding to the lightest pseudoscalar (π0, η, η′) poles, yet it could
be related to a combined chiral and large-NC expansion [45]. This can be computed
straightforwardly [44] knowing the corresponding pseudoscalar transition form factors
(TFFs) as functions of both photons virtuality. See Redmer’s talk on the precious ex-
perimental input to these (and others required for aHLbL

μ ) TFFs. In addition, there are
some theoretical properties constraining these TFFs, like the chiral limit, the singly and
doubly virtual asymptotic limits predicted by QCD, analyticity and unitarity, etc. The
dispersive evaluation [46,47] yields a very precise result for the π0 contribution,

(2) aπ
0,HLbL

μ =
(
63.0+2.7

−2.1

)
× 10−11,

confirming the rational approximants’ determination [48],

(3) aπ
0,HLbL

μ = (63.6± 2.7)× 10−11.
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These results are also supported by, e.g., Dyson-Schwinger equations evaluations, yielding
aπ

0,HLbL
μ = (62.6± 1.3) × 10−11 [49], and aπ

0,HLbL
μ = (61.4± 2.1) × 10−11 [50] and by

holographic QCD results [51-53] (see, however, [54]) and chiral Lagrangians including

resonances [55, 56]. For the η(
′) contributions there is no dispersive computation yet.

The rational approximants’ calculation [48,57-59] yields

(4) aη,HLbL
μ = (16.3± 1.4)× 10−11, aη,HLbL

μ = (14.5± 1.9)× 10−11,

which are the reference values for this contribution. Again, they are supported by the
different approaches mentioned before where, in particular, Dyson-Schwinger equations
results in aη,HLbL

μ = (15.8± 1.2) × 10−11, aη
′,HLbL

μ = (14.7± 1.9) × 10−11 [49] and

aη,HLbL
μ = (13.3± 0.9) × 10−11, aη

′,HLbL
μ = (13.6± 0.8) × 10−11 [50], respectively. From

the dispersive and rational approximants calculations, the WP quotes

(5) aπ
0+η+η′,HLbL

μ =
(
93.8+4.0

−3.6

)
· 10−11,

still to be considered the data-driven SM prediction for this leading contribution to HLbL,
coming from the lightest pseudoscalar poles.

The very well-known pseudoscalar electromagnetic form factors are the key objects
to determine their box contributions to aHLbL

μ . The dispersive result for the π case

(6) aπ−box,HLbL
μ = −(15.9± 0.2)× 10−11,

was later on confirmed by Dyson-Schwinger evaluations aπ−box,HLbL
μ = −(15.7 ± 0.4) ×

10−11 [49], and aπ−box,HLbL
μ = −(15.6 ± 0.2) × 10−11 [60]. For the kaon case, the early

evaluation of ref. [61], aK−box,HLbL
μ = −(0.46± 0.02)× 10−11 was slightly revised within

Dyson-Schwinger and then also using a dispersive framework [62], both agreeing on

(7) aK−box,HLbL
μ = −(0.48± 0.02)× 10−11.

The SM prediction comes from eqs. (6) and (7), still coinciding with the WP number [1]

(8) a(π/K)−box,HLbL
μ = −(16.4± 0.2)× 10−11.

Now we turn to another contribution coming from two-particle cuts, that associated
to pseudoscalars rescattering. For the pions case, the dispersive evaluation [42, 43] is
quite precise for the contribution associated to the π-pole left-hand cut (LHC),

(9) aππ,π−poleLHC
μ,J=0 = −(8± 1)× 10−11,

where contributions from D- and higher-orders partial waves were covered by the uncer-
tainty. This agrees with other evaluations [63-66] that include additional scalar contri-
butions, converging to [66]

(10) aScalars
μ = −(9± 1)× 10−11,

again in accord with the WP [1]. Similarly, the tensors contribution [67]

(11) aTensors
μ = −(0.9± 0.1)× 10−11
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is unchanged with respect to ref. [1].
The part which has been evolving less trivially since 2020 corresponds to the axial-

vector contributions, which should be regarded together with the remaining perturbative
QCD constraints.

Melnikov and Vainshtein [68] put forward that pseudoscalar poles alone cannot satisfy
short-distance QCD restrictions and emphasized the importance of axial vectors to fulfil
this requirement. Modern studies coincide in smaller values for these contributions than
initially advocated.

Reference [69] clarified ambiguities about bases arising because of axials off-shellness
and, together with ref. [70], emphasized the relationship between short-distance, axial
anomaly constraints, and the axial contributions (with possible relevant role of pseu-
doscalar resonances, see also [50]), a hot topic since then. References [40,69,71] gave rise
to the WP number [1]

(12) aAxials
μ = (6± 6)× 10−11.

This was accompanied by the estimation of the contribution from light-quark loops and
remaining QCD short-distance constraints (SDCs) [72-74]

(13) au/d/s−loops+SDCs
μ = (15± 10)× 10−11.

Given their correlation, these two contributions were combined with errors added linearly
(uncertainties are combined quadratically, unless otherwise stated) to [1]

(14) aaxials+SDCs
μ = (21± 16)× 10−11 .

Finally, the c-quark contribution (with uncertainty to be added linearly to eq. (14))
is [50, 72-75]

(15) ac−loop
μ = (3± 1)× 10−11.

The leading-order aHLbL
μ contributions is obtained from eqs. (5), (8), (10), (11), eqs. (14),

and (15), yielding

(16) aHLbL,LO
μ = (92± 19)× 10−11.

Progress since the WP on axials and/or SDCs has improved the understanding of the
regime where all photon virtualities are large, and when one of them is much smaller
than the other two [50, 70, 76-88]. However, different model calculations considering
axial-vector mesons and SDCs [51-53,70,83,89] suggest a shift in the central value around

(17) aaxials+SDCs
μ = (31± 10)× 10−11,

larger than previously estimated, (14), but compatible within errors. Using eq. (17), the
overall contribution would then be

(18) aHLbL,LO
μ = (102± 17)× 10−11,
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which is closer to the latest lattice QCD evaluations by the Mainz [90] ((109.6± 15.9)×
10−11) and RBC/UKQCD [91] ((124.7± 14.9)× 10−11) Collaborations (to be compared
to (78.7 ± 35.4) × 10−11 [92] by RBC, used in the WP). At NLO [93] the central value
and its uncertainty are increased by only (2± 1)× 10−11.

These observations evince that a better understanding of the role of axial-vector
mesons and the intermediate energy region is an important step towards a more precise
and reliable estimate for the HLbL contribution. Progress in this direction continues
[70,76-88].

4. – Conclusions

• The WP number, aHLbL,LO
μ = (92± 19)× 10−11 [1], still stands as the data-driven

SM prediction for aHLbL,LO
μ .

• The dominant uncertainty comes from short-distance + axial contributions (cor-
related uncertainties), with improved understanding since the WP, where work
still needs to be done. This may shift the SM prediction slightly, to aHLbL,LO

μ =

(102± 17)× 10−11.

• Measurement of di-photon resonance couplings (particularly for axials) would be
very helpful.

• Lattice QCD has just reached a comparable uncertainty to the data-driven deter-
minations of this piece, thereby reducing the uncertainty through their combination
to ≤ 10 × 10−11, in agreement with the sought accuracy by the time of the final
publication of the aμ measurement by the FNAL experiment. So the ball is on
HVP’s court.
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[55] Roig P., Guevara A. and López Castro G., Phys. Rev. D, 89 (2014) 073016.



DATA-DRIVEN APPROXIMATIONS TO THE HADRONIC LIGHT-BY-LIGHT ETC. 7

[56] Guevara A., Roig P. and Sanz-Cillero J. J., JHEP, 06 (2018) 160.
[57] Escribano R., Masjuan P. and Sánchez-Puertas P., Phys. Rev. D, 89 (2014) 034014.
[58] Escribano R., Masjuan P. and Sánchez-Puertas P., Eur. Phys. J. C, 75 (2015)

414.
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798 (2019) 134994.
[73] Colangelo G., Hagelstein F., Hoferichter M., Laub L. and Stoffer P., JHEP,

03 (2020) 101.
[74] Colangelo G., Hagelstein F., Hoferichter M., Laub L. and Stoffer P., Phys.

Rev. D, 101 (2020) 051501.
[75] Masjuan P. and Vanderhaeghen M., J. Phys. G, 42 (2015) 125004.
[76] Hoferichter M. and Stoffer P., JHEP, 05 (2020) 159.
[77] Knecht M., JHEP, 08 (2020) 056.
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