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Summary. — One of the most interesting channels to probe theories beyond the
Standard Model at the Large Hadron Collider is the production of a new massive
particle, that decays into pairs of Higgs bosons which, in turn, decay into a pair of
b-quarks and a pair of τ leptons. A fundamental discriminant variable to separate
HH signal from the backgrounds is the invariant mass of the di-τ system. In order
to reconstruct it special techniques are needed, as the presence of neutrinos from
τ decay does not allow for a complete reconstruction of the event. To this end, a
transformer-based architecture (Particle Transformer) has been implemented, show-
ing better results with respect to the most common used algorithm in CMS, which
is, in addition, extremely CPU consuming.

1. – Introduction

The fundamental interactions of nature are investigated at the Large Hadron Collider
(LHC) at CERN, where the Compact Muon Solenoid (CMS) experiment collects signals
generated by proton-proton (p-p) collisions occurring every 25 ns when two high-energy
proton bunches cross. The posterior analysis of these data allows to probe the Stan-
dard Model (SM) of particle physics. In particular, the precise characterization of the
properties and couplings of the Higgs boson (H) is now of utmost importance, since devi-
ations from SM predictions may point to physics beyond the SM (BSM). In this regard,
a central property of H is its self-coupling, which is proportional to its mass and whose
experimental evidence is yet to be found. The most promising method to directly probe
the H self-coupling is via the study of Higgs boson pair production (HH). Observing this
process at the LHC is particularly difficult because it has a small cross-section, which is
roughly 1500 times smaller than the single H production cross-section. Nevertheless, this
small cross-section is highly sensitive to the presence of BSM contributions, that could
manifest directly as new states X of mass mX > 2mH decaying into a HH system [1].
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Among the decay channels of HH, the one involving two bottom quarks and two
τ leptons (bbτ+τ− or, for simplicity, bbττ) represents one of the best options for HH
searches. The bbττ final state benefits from a sizeable branching fraction of 7.3% and
concurrently profits from the high-selection purity of the τ leptons that keeps background
contamination contained. However, both H → bb and H → τ+τ− signals are challenging
to be extracted since there are several background processes with similar final state or
that result in jets from quarks, or gluons which are misidentified as the signal τ or b jets.
This discrimination between signal and background events can be performed based on
the invariant mass of the di-τ system. Also this mττ estimation is arduous: τ leptons are
not stable particles as they in turn decay into electrons or muons (i.e.,, leptonically) or
into quarks (i.e.,, hadronically), both accompanied by neutrinos which weakly interact
with matter and escape detection. As a consequence only a partial reconstruction of the
di-τ is possible, in the form of an invariant visible mass (mvis

ττ ), which has a resolution
that does not allow to efficiently discriminate the HH signal from the background. To
exploit at the most the information collected by the detector and improve the precision
on mvis

ττ , the invariant mass of the ττ pair is reconstructed using the CMS algorithm
Secondary Vertex Fit (SVFit) [2]: taking as inputs the visible τ decay products and
the Missing Transverse Momentum (MET, i.e., the total imbalance in the transverse
momentum representative of all escaped neutrinos in the event), SVFit reconstructs,
through a maximum likelihood approach, the most probable kinematics of the missing
neutrinos in the final state. The significant computational time combined with a reduced
resolution of the mass reconstructed by this algorithm opens opportunities for new ML-
based strategies. In this work, a deep learning model —Particle Transformer (ParT)—
has been implemented to estimate the four-momentum of the neutrinos involved in the
τ decay for a high-resolution reconstruction of the corresponding invariant mass.

2. – Data sets and methods

2
.
1. Data. – The HH signal and backgrounds samples used to train, validate and test

the ParT model have been produced with a full detailed simulation of the CMS detector,
the Geant4 package [3] has been used to simulate the interaction of particles through the
detector:

• The signal sample is represented by the gluon-gluon fusion (ggF) production of a
massive resonance X of spin 0 decaying in a couple of Higgs bosons. Independent
samples are generated for different values of mX ranging from 250 GeV to 550 GeV
every 50 GeV. The choice to focus on this mass interval range, instead of considering
the entire range up to 1 TeV, is due to the fact that it constitutes the most difficult
part to be reconstructed by SVFit. Indeed, in the absence of a Lorentz boost, the
two τ are often produced back to back and the missing momentum associated with
their neutrinos partially cancels out. As a result, the invariant mass of a resonance
cannot be directly reconstructed using the MET and the visible decay products
of the τ leptons. At this level, pre-selection criteria on τ and b-jets are applied,
leading to the survival of τ pair objects that can decay into one of the τhτh, τμτh,
τeτh final states with a total of 2 or 3 neutrinos (those coming from the same τ
decay are reconstructed as a single system).

• The considered background processes are:

1) Drell-Yan: production of a Z boson decaying into a pair of τ leptons.
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2) tt: production of a top anti-top pair with each one decaying into a W boson
and a b-quark. One W boson is then decaying into a lepton (e, μ or τ) and a
neutrino, while the other into a pair of quarks (generating light jets).

2
.
2. Representation of the input . – Each collider event obtained in the data generation

phase is converted to an event graph as the input for the ParT, reason why it can be
seen as a Graph Neural Network. A node represents a final state object while an edge
represents a set of pair-wise features between two nodes. This object can be a τ lepton,
a b-jet or MET. Each node has a twelve-dimensional feature vector:

(1) xi = (px, py, pz, E, pT , η, φ, dm, bjetdF , bjetbpNet, bjet
c
pNet, bjet

uds
pNet),

which contains the most relevant properties of the corresponding final state. For
the elements of a feature vector, (px, py, pz, E) represent the the four-momenta
of the object, pT , η, φ and dm, respectively, the transverse momentum, the
pseudo-rapidity, the azimuthal angle and the decay mode. The remaining ones
(bjetdF , bjetbpNet, bjet

c
pNet, bjet

uds
pNet), instead, represent variables characterising jets, in-

dicating a score about the probability that the jet comes from a b-quark or c-quark. Each
pair of nodes is linked by an edge which is weighted to a four-dimensional feature vector:

(2) ui = (Δ, kT , z,m
2).

These features are derived from the energy-momentum 4-vector p = (px, py, pz, E) of
each particle, i.e., node. Specifically, for a pair of particles a, b with 4-vector pa, pb, ui

are calculated as:

Δ =
√

(ya − yb)2 + (φa − φb)2,(3)

kT = min(pT,a, pT,b)Δ,(4)

z = min(pT,a, pT,b)/(pT,a, pT,b),(5)

m2 = (Ea + Eb)
2 − || �pa + �pb||2,(6)

where yi is the rapidity, φi is the azimuthal angle, pT,i =
√

p2x,i + p2y,i is the transverse

momentum (pT ), �pi = (px,i, py,i, pz,i) is the momentum 3-vector and ||.|| is the norm, for
i = a, b. Since these variables tipically have a long-tail distribution, for each particle pair
(lnΔ, lnkT , lnz, lnm

2) has been used as edge. The choice of this set of pair-wise features
is motivated in [4].

2
.
3. ParT . – The transformer model, as presented in [5], stands as a prominent deep

learning architecture that has found widespread adoption across diverse domains, includ-
ing Natural Language Processing (NLP), computer vision (CV), and speech processing.
Beyond its prolific use in language-related applications, the transformer has found ap-
plications in other disciplines, such as chemistry and life sciences. A recent work [6]
demonstrated how this class of models can achieve good results also for high-energy
physics applications, in particular for the jet tagging task outperforming the previous
state-of-the-art network. This led to the choice of investigating such architecture to
address the di-τ mass regression problem.

The ParT is composed of only the encoder part with respect to the original published
version, but on the other side, it combines both the task of regression of the neutrinos
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Fig. 1. – ParT architecture.

four-momentum, and the task of classification of the event (i.e., the probability of be-
longing to the ggF, DY or tt class). The detailed architecture of the ParT is in fig. 1
and, as first step, particle and interaction inputs are each one followed by a Multi-Layer
Perceptron (MLP) in order to project them to fixed-size vectors. Unlike transformers for
NLP and vision, no ad hoc positional encodings has been added, since the particles in
an event are permutation invariant. Then, the particle embedding X is fed into a stack
of two encoder blocks to produce new embeddings via multi-head self-attention, the core
of these kind of models. In this context the interaction embedded matrix U is used to
augment the scaled dot-product attention (powered multi-head self-attention: P-MHA)
by adding it as a bias to the pre-softmax attention weights. This allows P-MHA to in-
corporate particle interaction features designed from physics principles and modify the
dot-product attention weights, thus increasing the expressiveness of the attention mech-
anism. After that, the last particle embedding is fed into the pooling layer that has the
role to summarize the outputs of the encoder layers into a single fixed-size vector, used for
the downstream tasks. The usage of an overall loss that takes into account the regression
of the neutrinos four-momentum (MAE loss), the mass constraint (E2 < p2) (Huber loss)
but also the classification (CrossEntropy loss) led to a better output, since the model
optimizes the reconstruction of the mass not only based on the physics constraints, but
also to efficiently separate signal and background.

3. – Results

To compare the performance of ParT and SVFit algorithms in reconstructing the SM
Higgs boson mass from a resonant decay, three different indicators are studied: the mean
of the reconstructed mass distribution, the resolution of the mass peak calculated as
the standard deviation and the computational inference time. The first two indicators
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Fig. 2. – Invariant mass distributions for signal samples.

are calculated after a Gaussian fit. Regarding the multi-class classification task, the
confusion matrix on the test set is discussed.

Figures 2 and 3 show the mττ distribution predicted by the ParT (mParT
ττ ), by the

SVFit algorithm (mSV Fit
ττ ), computed combining Monte Carlo neutrinos four-momentum

(mMC
ττ ) and the pair of reconstructed τ , and the visible one (mvis

ττ ), without any neutrino
contribution. Table I summarizes the μ and σ results on signal and background samples.

The obtained results, compared with those estimated using the SVFit algorithm,
show an invariant mass distribution of the di-τ system more centered in the target value
and narrower (therefore better resolved) since it provides a smaller bias. In addition to
these advantages, the ParT algorithm requires a much shorter computation time in the
inference phase, of the order of milli-seconds compared to seconds of SVFit.

From the classification results, the confusion matrix on the test set showed that the
90% and 91% of ggF and DY events, respectively, are correctly identified. The tt sample
is, instead, the one that is recognized with a lower precision, with a considerable 18% of
events incorrectly classified as signal.

Fig. 3. – Invariant mass distributions for background samples.
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Table I. – μ and σ after a Gaussian fit on the mττ computed by the analyzed algorithms.

Sample μ, σ (mParT
ττ ) [GeV] μ, σ (mSV Fit

ττ ) [GeV] μ, σ mMC
ττ [GeV]

MX = 250 GeV 122.65, 5.10 159.23, 36.63 124.02, 1.92
MX = 550 GeV 123.01, 4.19 120.24, 18.16 123.85, 1.89
DY 88.98, 4.92 101.64, 21.05 89.92, 2.19
tt̄ 113.20, 52.84 150.19, 87.62 101.74, 47.49

4. – Conclusion

The mass reconstruction of the di-τ system resulting from a Higgs boson decay carries
an important role in searches of new massive particles decaying into two Higgs bosons.
Currently, the so-called SVFit algorithm in the CMS Collaboration is used based on a
likelihood approach. One disadvantage of this approach is its high CPU time of O(1 s)
per event, which can be a limiting factor for very big data sets. Because of this, new and
computationally less expensive methods for the reconstruction are under study. In this
context, the transformer architecture has demonstrated to be a competitive approach.
The presented work only shows the performance of ParT on a very specific, Monte Carlo
generated event sample, which is restricted to the gluon-gluon fusion production of a new
massive particle. In order to generalize these results it would be necessary to train the
ParT algorithm also for other production processes and the fully leptonic decay channels
of the pair of τ .
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