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Summary. — Employing the worldline Monte Carlo technique, Matrix Product
State simulations and a variational approach, we focused on the dissipative quantum
Rabi model, revealing a Beretzinski-Kosterlitz-Thouless quantum phase transition
under low bath coupling. Exploring the dynamics of a slow qubit coupled to a fast
oscillator, we found functional relationships, analyzed couplings’ effects, and evalu-
ated the qubit Bloch vector. Weak to intermediate bath coupling simplifies qubit
state evaluation, while the ultra-strong coupling regime exhibits non-Markovian ef-
fects and entanglement growth. Recent investigations include the impact of baths
on two interacting qubits, showcasing a method for quasi-fully non-decoherent qubit
encoding. This work provides insights into open quantum systems, emphasizing po-
tential applications in quantum computing and communication.

1. – Introduction

In the realm of quantum physics, we deal with complex interconnected systems, where
numerous individual components interact dynamically. Each element possesses distinct
properties and collectively forms composite systems exhibiting intricate behavior. These
systems are usually not isolated; instead, they exist in constant interaction with their
environment, which can influence the systems within it, either ejecting a component,
altering its trajectory or inducing novel interactions among systems. These phenomena
lay the foundation for the concepts explored in this work, specifically, the dynamics of
open quantum systems. We will start by examining the fundamental Rabi model and
progress to scenarios involving two qubits. The modeling framework employed through-
out the work for all the physical models under investigation refers to the established
concept proposed by Caldeira and Leggett. Our focal subsystem is then linearly coupled
to a set of N harmonic oscillators. As N tends to infinity, they collectively transform
into a real reservoir. This transition from reversible to irreversible dynamics results in
the exclusive flow of energy from the system to the reservoir, maintaining the reservoir’s
equilibrium state. We implement the Caldeira-Leggett model in its quantum formulation.
This approach allows us to take the continuum limit and describe the bath’s structure
using a spectral density function.

2. – Models and techniques

First, we focus on the quantum Rabi model (QRM), which involves a two-level system
coupled to an oscillator. The oscillator, in turn, interacts with a thermal bath at zero
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temperature (see fig. 1(a)). We set � = kB = 1. The qubit frequency is Δ, the oscillator
one ω0, and the parameter g represents the coupling strength between them. The bath
is represented as a collection of N oscillators coupled to the position operator of the
oscillator x0. The definition of α, linking the oscillator to the bath, characterizes the
bath spectral density J(ω) = α

2ωf(
ω
ωc
). Here f( ω

ωc
) is a function that depends on the

cutoff frequency for the bath modes, ωc, which governs the behavior of the spectral
density at high frequencies.

We proceed by investigating the behavior of two interacting qubits in an Ohmic bath
composed of harmonic oscillators, similar to our previous analysis (see fig. 1(b)). Δ is
the frequency of the two qubits and ν the strength of the interaction between them. The
bath is again made of N harmonic oscillators and α is defined such that the bath spectral
density is given by the same expression as before. The only difference is that now the
bath is directly connected to the two qubits.

We employed various techniques to investigate the equilibrium and non-equilibrium
properties of the open quantum systems under study. We derive solutions for the Heisen-
berg equations of motion (HEM) for both the system and the degrees of freedom of the
bath. These solutions involve complex coupled differential equations, and we use the
time evolution of the qubit observables, assuming zero coupling to the oscillator to solve
them. In the low coupling to the environment regimes, we utilize solutions of Lindblad
master eq. (LME), adopting a global approach [1]. This entails diagonalizing the closed
system and utilizing its eigenstates to formulate the Lindblad equation.

To analyze the equilibrium properties of the systems, we implement World-line Monte
Carlo (WLMC), a path integral technique based on a Monte Carlo algorithm. We remove
exactly all the phonon degrees of freedom of the thermal bath, obtaining the density
matrix dependent only on the effective Euclidean action with the kernel depending on
the bath spectral density [2-4].

Another approach to the thermodynamic equilibrium properties is a variational ap-
proach based on Feynman’s work with the charge polaron problem (FM) [5]. He
introduced a clever variational action, such that in the perturbation expansion the first
order was sufficient to obtain an excellent description of the physics for arbitrary coupling
strengths. This method, combined with the Mori formalism, enables us to investigate
the non-equilibrium properties calculating the time-dependent relaxation functions.

The final method we employ is based on the Matrix Product State (MPS) ansatz for

Fig. 1. – (a) Quantum Rabi model: a qubit of energy gap Δ connected to an oscillator through g.
The oscillator housing the qubit interacts with an Ohmic bath through α [9]. (b) Two coupled
qubits: two qubits of energy gap Δ interacting one with another through ν and coupled to an
Ohmic bath through α.
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1D tensor networks [6]. This representation is particularly effective when the entangle-
ment entropy exhibits an area-law growth. In such cases, the numerical cost is no longer
exponential with the system size but becomes polynomial. We utilize the Density-Matrix
Renormalization Group technique to determine the ground states [7,8]. Furthermore, us-
ing the same MPS representation for the entire many-body open quantum system, we
can compute its dynamical evolution. The two-site time-dependent variational principle
proves to be a favorable technique, striking a balance between a small bond dimension
and extended simulation times.

3. – Strategies and results

3
.
1. Quantum Rabi model . – In the first study [9], our focus lies in understanding

the impact of dissipation on the qubit-oscillator interactions. To investigate the system’s
dynamics, we employ the HEM approach valid for low values of g and the LME which is
applicable for low values of α. Furthermore, we employ MPS numerical simulations and
compare the results obtained through these three methods. When examining the mean
values of the oscillator quadratures and number, we perform a Bloch vector evaluation
of the qubit state. This is because, upon computing the fast Fourier transform (FFT) of
these quantities, we observe that the quadratures retain memory of the qubit dynamics,
with a peak at the qubit frequency remaining unchanged even as dissipation increases.
By focusing on the FFT of the cavity number, we detect two peaks at renormalized fre-
quencies corresponding to “up” and “down,” allowing for a qubit z-component evaluation
that is more sensitive to the dissipation. We discovered that a Bloch vector evaluation
is reliable for systems that are weakly to moderately coupled to their environment (see
fig. 2(a)). However, when the coupling between the system and its environment is very
strong, the system becomes entangled with its surroundings, that is its von Neumann
entropy Sq(t) = −Tr{ρ ln(ρ)} grows towards its maximum value (ln(2)), making it harder
to study the system in isolation (see fig. 2(b)).

In the same QRM we then look at the occurrence of a dissipative Beretzinski-
Kosterlitz-Thouless quantum phase transition (QPT) [10]. The system transitions from
a disordered phase to an ordered one by increasing the qubit-oscillator coupling g and

Fig. 2. – (a) Phase diagram of the QRM with g/Δ vs. α in weak coupling (WC), strong cou-
pling (SC) and ultra-strong coupling (USC) for z -component and Bloch vector evaluations [9].
(b) Qubit Von Neumann entropy Sq computed through MPS for weak coupling (WC), strong
coupling (SC) and ultra-strong coupling (USC) [9].
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crossing a quantum critical point. When considering the effective Euclidean action,
which traces out the bath degrees of freedom, the system is mapped to a classical spin
chain with long-range ferromagnetic interactions and a kernel behavior typical of a BKT
transition. Therefore, the critical point corresponds to the transition to the ordered fer-
romagnetic phase under equilibrium conditions. Returning to our initial physical model
of a qubit in contact with an Ohmic bath, this ordered phase manifests as the qubit
always being in the state ↑ or ↓, corresponding to the two degenerate ground states of
the system due to the strong coupling to the bath. This occurs at zero temperature,
where only quantum fluctuations are responsible for the ordering. At finite temperature,
there is a region in which quantum fluctuations dominate over thermal ones, and the
system still shows a quantum critical behaviour. We use the three independent methods
introduced above to unveil the QPT: WLMC, FM, and MPS. The first two help us to
understand when the system is at rest, while the latter two to bescribe how it behaves
over time. At thermodynamic equilibrium, we compute the squared magnetization of the
equivalent model undergoing the QPT as a function of g/Δ for three different values of
βΔ (see fig. 3 (left)). This quantity jumps from zero to one at the critical g, steeper and
steeper by increasing β, indicating that we are approaching the quantum critical point.
The critical value of g can be approximated using an analytical formula [10], but it has
also been determined through a numerical WLMC analysis. This analysis employs the
approach suggested by Minnhagen et al. within the framework of the XY model [11,12].
The squared magnetization is then a measure of how ordered the system is, becoming
non-zero after the critical g. In the time evolution of the system, we observe the effects
of the QPT. Specifically, we adiabatically turn on a small magnetic field that we turn
off at time zero, from which we start to observe the system relaxation. The plots in
fig. 3 (right) show the relaxation function Σz(t) for different g values. For low values,
we observe Rabi oscillations between the two states of the qubit. By increasing g, the
relaxation function shows exponential decay, and after the critical g, it no longer changes.
This happens at the same critical g as before, and it means that the qubit cannot be in
two states at once, as an evidence of the QPT.

3
.
2. Two coupled qubits . – Finally, we delve into the scenario involving two qubits in

an Ohmic bath and explore the potential of utilizing qubit-qubit interactions to safeguard

Fig. 3. – Left: squared magnetization of the mapped model vs. the coupling g/Δ at βΔ = 10
and βΔ = 103, comparing WLMC and FM. Right: qubit relaxation function Σz(t) at different
values of g/Δ comparing FM and MPS. In the inset of panel (d) the qubit no longer relaxes for
g ≈ gc. Reprinted figures with permission from [10], copyright 2024 by the American Physical
Society.
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information against the effects of dissipation [13]. To gain a deeper understanding of how
states affect the dynamic behavior of the system, we can look at the closed spectrum
(only the two-qubit system). The four eigenstates depend on the interaction parameter ν.
When it is positive, the qubit interaction is ferromagnetic; otherwise, it is antiferromag-
netic. We find that the antiferromagnetic interaction tends to be more robust against the
bath’s tendency to ferromagnetize the two qubits. Additionally, it’s worth noting that
the ground state corresponds to the Ψ− Bell state, which is the singlet state and repre-
sents a decoherence-free subspace (DFS). We have chosen to implement a tensor product
structure within subspaces of the Bell basis {|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉} to encode informa-
tion in a single logical qubit. The four states are defined in the common eigenbasis of σz

operator {|↑〉, |↓〉} as follows: {|Φ+〉 = (|↑〉|↑〉 + |↓〉|↓〉)/
√
2, |Φ−〉 = (|↑〉|↑〉 − |↓〉|↓〉)/

√
2,

|Ψ+〉 = (|↑〉|↓〉+ |↓〉| ↑〉)/
√
2, |Ψ−〉 = (|↑〉|↓〉 − |↓〉|↑〉)/

√
2}.

Our investigation includes three encoding strategies:

• Single-Level Encoding (Antiferromagnetic Case - AF): the singlet state represents
the logical “up”, and the Ψ+ state serves as the logical “down”.

• Multilevel Encoding (Symmetric Case - SYMM): the two antiferromagnetic states
(Ψ− and Ψ+) represent the logical “up”, while the ferromagnetic states (Φ− and
Φ+) correspond to the logical “down”.

• Multilevel Encoding (Nonsymmetric Case - NSYMM): the singlet state serves as
the “up”, while the “down” is a combination of the other three states within the
triplet.

Fig. 4. – Left: fidelity F(t) of the free evolution with the open system evolution of encoded
qubits AF, SYMM and NSYMM and one physical qubit as functions of time. We average the
fidelity over many realizations of initial states, sampling the entire Hilbert space. Right: purity
P(t) of encoded qubits for α = 0 and α = 0.01 as a function of time for the AF and NSYMM
strategies. We average the purity over many realizations of the initial state in the new encoded
subspace. Reprinted figures with permission from [13], copyright 2024 by the American Physical
Society.
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We optimize the two multilevel strategies by maximizing fidelity with respect to free
evolution. Figure 4 (left) demonstrates that all the strategies outperform the physical
qubit in terms of fidelity. Furthermore, fig. 4 (right) illustrates the purity of AF and
NSYMM in the new logical subspace. The top plot represents the qubits without the
bath. The purity oscillates, periodically returning to 1, indicating that the encoded qubit
remains in a quantum state. On the other hand, the bottom plot shows the scenario with
non-zero coupling to the bath. For NSYMM, all the peaks are shorter, and the purity no
longer reaches 1 over time. In contrast, for AF, the amplitude of oscillations is reduced,
but the purity remains consistently high, with a greater stationary value. Therefore, AF
is an excellent choice for encoding information that is highly resilient to the effects of the
bath over time.

4. – Discussion and conclusions

In conclusion, our research has deepened our understanding of qubit-oscillator inter-
actions and revealed a QPT occurring when the qubit and oscillator are weakly coupled
to their environment. Our findings suggest that the QPT in the Rabi model can be
experimentally observed by adjusting the qubit-oscillator coupling. A suitable experi-
mental platform to reproduce our model involves a flux qubit ultrastrongly coupled to
its resonator, further coupled to an Ohmic bath [14, 15]. We have also developed an
encoding strategy that demonstrates resilience to environmental factors, thanks to the
antiferromagnetic interaction and the DFS. As we move forward, further study will in-
clude the addition of qubits or couplers and the implementation of a measurement process
description. Indeed, our current research extends to studying the modifications in the
QPT dynamics when an additional qubit is introduced into the quantum Rabi model.
Specifically, we have investigated the behavior of entropy and entanglement among the
components when the system is out of thermodynamic equilibrium and how these features
can be related to dynamical and thermodynamic quantum phase transitions [16].
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