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Summary. — Raman spectroscopy emerges as a highly promising diagnostic tool
for thyroid cancer due to its capacity to discern biochemical alterations during cancer
progression. This non-invasive and label/dye-free technique exhibits superior effi-
cacy in discriminating malignant features compared to traditional molecular tests,
thereby minimizing unnecessary surgeries. Nevertheless, a key challenge in adopting
Raman spectroscopy lies in identifying significant patterns and peaks. This study
proposes an artificial intelligence approach for distinguishing healthy/benign from
malignant nodules, ensuring interpretable outcomes. Raman spectra from histo-
logical samples are collected, and a set of peaks is selected using a data-driven,
label-independent approach. Machine Learning algorithms are trained based on
the relative prominence of these peaks, achieving performance metrics with an area
under the receiver operating characteristic curve exceeding 0.9. To enhance inter-
pretability, eXplainable Artificial Intelligence (XAI) is employed to compute each
feature’s contribution to sample prediction.

1. – Introduction

Thyroid cancer, marked by the malignant growth of thyroid gland cells, stands as
the most prevalent malignancy within the endocrine system. Its incidence rates, among
the top ten cancers globally, have risen due to enhanced diagnostic capabilities. The
most common types are represented by papillary thyroid carcinoma (PTC), follicular
carcinoma (FC), and the follicular variant of papillary thyroid carcinoma (FV-PTC).
PTC, predominant in younger individuals, constitutes about 80% of cases, while FC,
affecting older individuals, represents 10–15%. FV-PTC poses diagnostic challenges due
to its follicular growth pattern. Early-stage detection thyroid cancer entails a high 5-year
relative survival rate, emphasizing the need for accurate diagnostic tools [1].
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Clinical challenges encompass the surge in thyroid nodule detection, managing cyto-
logically indeterminate nodules, and inter-observer diagnosis variability [2-7]. Molecular
analyses aim to minimize unnecessary surgeries, yet their predictive value remains lim-
ited [8-12]. In this context, Raman spectroscopy, a technique that recognizes vibrational
fingerprints of molecules through Raman scattering, emerges as a promising tool to iden-
tify thyroid neoplastic lesions [13], considering recent evidence in support of its ability to
detect biochemical changes during oncogenesis, along with its non-invasiveness [14-19].

Despite its potential, Raman spectroscopy faces both practical and conceptual chal-
lenges: correctly interpreting spectral characteristics and overcoming diagnostic variabil-
ity require a standardized workflow. Artificial intelligence, particularly machine learning,
emerges as a strategic solution to this kind of problems, since it automates classification
workflows, ensures uniform diagnostic criteria, and adapts to evolving datasets. Ap-
plication of machine learning to analyze a dataset of Raman spectra from histological
samples for thyroid cancer diagnosis has been proposed in ref. [17], while analogous
methods have shown promising in various other types of cancer. The study presented in
this paper advances prior research by developing supervised predictive models capable
of classifying new spectra, not included in the training datasets, additionally exploring
the fingerprints of thyroid cancer through quantitative procedures, thus shedding light
on potential biomarkers [20]. The combination of global and local approaches, employ-
ing the Boruta method and eXplainable Artificial Intelligence (XAI), enhances model
informativeness, generalization and transparency, aiming to make the decision process as
intelligible as possible [21, 22], which is especially relevant in realistic scenarios [23-30].
In the following sections, we provide an overview of the main findings of this work and
of the methodology employed therein.

2. – Results

The comprehensive study presented herein unfolds through three fundamental blocks
outlined in fig. 1: the clinical step, involving patient enrollment, thyroid gland surgery,
and pathological evaluation; the spectroscopy step, where Raman spectra associated
with each histological sample are obtained; the artificial intelligence step, where first
machine learning is used to distinguish between spectra associated to healthy/benign
and cancerous tissue, and then the most influential features are identified through XAI.

2
.
1. Data and feature engineering . – The analyzed dataset includes 59 Raman spectra

from histological samples, excised from thyroids with suspected cancer, which provide the
basis for training machine learning algorithms. Study population included 54 subjects (34
females, 20 males) affected by thyroid nodular pathology, with age distribution centered
at 46.3 years, with a 11.2 years standard deviation. Raman spectra were collected by
utilizing the extended scan mode across the 100–3600 cm−1 Raman-shift range, with a
spectral resolution of approximately 1 cm−1. Further details of the enrolling procedure
and the Raman spectroscopy stage are reported in ref. [20].

Feature engineering begins with a preprocessing stage, where spectra are initially
interpolated, normalized and smoothed through cubic spline. Then, a univariate Gaus-
sian mixture model is used to identify for peak detection, leading to the identification
of 32 peak values in the spectra, each characterized by a central value and a width.
The procedure is refined by merging partially overlapping peaks, which results in 29
non-overlapping selected intervals [20]. To compare our results with established knowl-
edge on the topic, we pay specific attention to the interval including the peaks correspond-
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Fig. 1. – General workflow of the analysis [20].

ing to the following Raman shifts, expressed in cm−1: 747, 1125, 1302, 1584, associated
to reduced cytochrome c; 1003, 1155, 1516, associated to carotenoids; 1376, associated
to oxidised cytochrome b; 1638, associated to oxidised cytochrome c. Raman spectra
characteristics are distilled into features based on the highest intensity value (promi-
nence) in each of the 29 intervals. In particular, the obtained feature set consists of 406
not redundant ratios between prominences, allowing for a detailed representation of the
spectral structure. The choice of these features is made by evaluating the distributions
of a ratio and its reciprocal on the entire dataset and keeping the quantity characterized
by the largest mean value compared to the standard deviation.

Finally, a wrapper method for feature selection based on the Boruta framework [31]
is used to mitigate noise and data redundancy effects. The procedure selects the fea-
tures that are uncorrelated with each other and significantly improve the performance of
a supervised learning Random Forest algorithm, exploiting the idea that training sam-
ple randomization and system perturbation help to soften the negative impact on the
algorithm determined by random fluctuations and correlations.

2
.
2. Machine learning workflow . – The artificial intelligence workflow implemented in

our study, displayed in fig. 2, consists of two nested loops, one for Synthetic Minority
Over-sampling TEchnique (SMOTE), which generates new instances by synthesizing
them from the samples already existing in the minority class [32] and another for a
leave-one-out classification procedure. In this study, the oversampling of the minority
class is performed within each leave-one-out iteration.

The described process ensures robust model training despite the limited dataset size
and class imbalance. Various machine learning algorithms, including Random Forest [33],
XGBoost [34], Support Vector Machine [35], and Gaussian Näıve Bayes [36], are explored
in search of the best performance in distinguishing healthy/benign from carcinoma spec-
tra. Specifically, we focus on the Receiver Operating Characteristic (ROC) curve, which
lies in a plane whose axis are the false positive rate and true positive rate. Then, we
quantify the performance of each classifier in terms of the area under the curve (AUC).
The analysis reveals that the best-performing algorithm, with median AUC 0.9441 and
interquartile range 0.0049 over 100 SMOTE runs, is the Random Forest classifier with
n estimators = 50, max depth = 5, criterion = “entropy”. Even by optimizing their
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Fig. 2. – Detailed workflow of the machine learning and eXplainable Artificial Intelligence (XAI)
analysis [20]. After preprocessing, 100 runs of the Synthetic Minority Over-sampling TEchnique
(SMOTE) with different random seeds are executed. In each SMOTE run, a leave-one-out
classification is implemented, and in the i-th leave-one-out iteration (where i ranges from 1 to
59) the Boruta algorithm selects Ni relevant features, that are used to construct the training
set; then, before implementing different machine learning algorithms, SMOTE is applied to
oversample the minority class. The classification algorithms employed in this study are Random
Forest (RF), XGBoost (XGB), Support Vector Machine (SVM) and Gaussian Näıve Bayes
(GNB). Their performances are quantified by the AUC metrics, which is the area under the
Receiver Operating Characteristic (ROC) curve. The impact of features on the prediction
provided by the best performing classifier for each instance is evaluated through the Shapley
(SHAP) values, averaged over all SMOTE runs.

internal parameters, the performances of other algorithms are worse, with median AUC
strictly smaller than 0.094 (see ref. [20] for details). The optimal classifier, a Random
Forest algorithm with specific internal parameters (n estimators, max depth, criterion),
demonstrated superior performance in distinguishing between healthy/benign and car-
cinoma spectra. The ROC curves shown in fig. 3 elucidate the classifier’s effectiveness,
with Random Forest outperforming other algorithms.

Once we have selected the optimal classifier, we use the related ROC curve to opti-
mize the classification threshold in order to maximize the geometric mean of sensitivity
and specificity. The normalized confusion matrix related to the classification of 59 sam-
ples with the optimal threshold of 0.5 underlines the model capacity to discern between
diagnostic categories, with the true and the predicted label coinciding in 91.0% cases for
healthy/benign tissue, and 91.1% cases for cancerous tissue. To expand the model appli-
cability, we explore the retroactive use of prediction probabilities for discerning diagnostic
subcategories. Median prediction probabilities indicated a hierarchy among diagnostic
labels, showing consistency with previous literature [17]: 0 (with IQR 0.12) for Healthy,
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Fig. 3. – Receiver Operating Characteristic (ROC) curves for one of the Random Forest
(RF) classifiers that maximize median AUC (n estimators = 50, max depth = 5, criterion =
“entropy”), for XGBoost (XGB) and Support Vector Machine (SVM) algorithms with arbitrary
internal parameters and for the Gaussian Näıve Bayes (GNB) algorithm. Plots referred to XGB
and SVM have been obtained in the configurations num parallel tree = 100, max depth = 3,
n jobs = 1, and c = 1, kernel = “entropy”, respectively. The true positive rate and false positive
rate coordinates of points in the ROC curves are median values computed over 100 SMOTE
runs [20].

0.04 (with IQR 0.36) for Benign, 0.80 (with IQR 0.45) for FC, 0.92 (with IQR 0.16) for
FV-PTC, 0.96 (with IQR 0.22) for PTC.

2
.
3. eXplainable Artificial Intelligence analysis . – To enhance the interpretability of

the model, an XAI analysis was conducted, focusing on the best-performing Random
Forest classifier. SHapley Additive exPlanations (SHAP) values were computed, provid-
ing insights into the impact of different features on prediction outcomes. Specifically,
for each given feature, the SHAP is computed by evaluating the difference between the
model output’s prediction with and without the considered feature, averaging over all
possible subsets of features [37, 38]. From the XAI analysis, it emerges that the 5 most
influential features among the ratios Pj/Pk of peak prominences in the intervals j and k
are the following ones:

• P24/P11, with the interval #24 containing the line 1376 cm−1 (oxidised cytochrome
b) and the interval #11 not containing lines associated with known categories of
molecules; higher values drive the classifier towards the healthy/benign prediction.

• P29/P17, with the interval #29 containing the line 1638 cm−1 (oxidised cytochrome
c) and the interval #17 containing the line 1155 cm−1 (carotenoids); higher values
drive the classifier towards the healthy/benign prediction.

• P8/P20, with the intervals #8 and #20 not containing lines associated with known
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categories of molecules; higher values drive the classifier mostly towards the cancer
prediction.

• P29/P18, with the interval #29 containing the line 1638 cm−1 (oxidised cytochrome
c) and the interval #18 not containing lines associated with known categories of
molecules; higher values drive the classifier towards the healthy/benign prediction.

• P2/P17, with the interval #2 not containing lines associated with known categories
of molecules and the interval #17 containing the line 1155 cm−1 (carotenoids);
higher values drive the classifier towards the healthy/benign prediction.

An extended list is reported in ref. [20]. We discuss the relevance of the above findings
in the next section.

3. – Discussion

The developed AI model exhibited satisfactory accuracy in distinguishing between
thyroid spectra associated to healthy/benign and cancerous tissue. The interpretability
of the model was further enhanced through XAI analysis, shedding light on the features
that are pivotal to the classification process. Notably, the dominance of carotenoid
lines in carcinoma spectra and the prevalence of oxidized cytochrome b and c lines in
healthy/benign spectra emerged as influential patterns. These findings align with existing
knowledge, underlining the model capability to discern molecular signatures associated
with thyroid cancer.

The clinical implications of our study are profound. The ability to accurately classify
thyroid lesions through Raman spectroscopy and AI introduces a non-invasive, label-free
diagnostic approach. By leveraging characteristic molecular fingerprints, this method-
ology can potentially mitigate unnecessary surgeries and enhance diagnostic precision.
The transparency in model predictions, facilitated by XAI, addresses a crucial aspect in
the clinical adoption of AI tools. Clinicians can gain insights into the features driving
predictions, fostering trust and facilitating informed decision-making.

While our study presents promising outcomes, certain limitations merit consideration.
The dataset, though meticulously curated, is relatively small and exhibits an imbalance
between healthy/benign and carcinoma spectra. This calls for cautious generalization of
the model performance to diverse populations. Additionally, the current model primarily
focuses on distinguishing between healthy/benign and cancerous spectra, overlooking
finer categorizations within carcinoma types. Future research endeavors should prioritize
expanding the dataset, ensuring diverse representation, and refining the model to discern
between specific carcinoma subtypes. In particular, new data are expected to come from
cytological spectra of samples acquired through fine needle aspiration, representing a less
invasive technique that does not require surgery.

The application of artificial intelligence in the clinical setting necessitates a seamless
integration into existing diagnostic workflows. Overcoming the practical and concep-
tual barriers associated with Raman spectroscopy requires collaborative efforts between
computer scientists, spectroscopists, and clinicians. The development of user-friendly
interfaces and standardized workflows can pave the way for the seamless adoption of ma-
chine learning and XAI tools in thyroid cancer diagnostics. The ambition of this research
line is the implementation of an apparatus designed for clinical environment, which can
generate spectra from samples and recognize the fingerprints related to oncogenesis. To
develop such a support system in a clinical context, we believe that it would be beneficial
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integrating the procedure with a further classifier, that would examine clinical data of
a different type, such as the dimensional parameters that are determined from thyroid
ultrasound scans.

The potential clinical utility of our artificial intelligence model extends beyond the
confines of thyroid cancer diagnostics. The successful application of similar method-
ologies in diverse cancer types highlights the versatility of Raman spectroscopy coupled
with artificial intelligence, and the role of the latter as an indispensable ally in the realm
of precision medicine. The development of specialized diagnostic tools for each cancer
type holds the promise of revolutionizing early detection and personalized treatment
strategies.
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