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Summary.— Proton therapy (PT) offers tumour treatments with highly conformal
depth-dose distributions and less damage nearby healthy tissues over photon beam
therapy. However, PT is sensitive to patient-specific anatomical variations which
may lead to severe dose deviations. A control CT is generally prescribed to check
the patient’s morphology. Treatment verification systems such as in-beam Positron
Emission Tomography (IB-PET) are desirable to avoid the delayed detection of
anatomical variations during PT treatments. However, the interpretation of the
PET monitoring data is still a subject of research since PET does not offer a direct
representation of the disease progress as a control CT does. The SYNCT project
aims to overcome this issue by using Neural Networks (NN) to produce synthetic
control CT (sCT) images which can provide a non-invasive and interpretable picture
of the anatomical variations in the patients. We studied the feasibility of sCT
production with MC simulations. The output of our NN, a Vision Transformer,
correctly produced the sCTs, which were compared with the ground truth across
multiple similarity metrics. This work can be a highly valuable tool in adaptive PT.

1. – Introduction

Proton therapy allows for a precise and targeted dose to be delivered to the tumour
volume and a better sparing of healthy tissues compared to conventional radiation ther-
apy [1, 2]. However, it is hindered by anatomical changes that may arise during the
treatment course. In common clinical practice, a control Computed Tomography (CT) is
generally prescribed and acquired during the second or third week of treatment. This CT
is used to check the patient morphology, by comparing it with the planning CT, which is
instead acquired before the start of the therapy and used to plan the treatment. Despite
that, critical issues remain when to correctly prescribe the control CT acquisition, since
no information regarding the delivered dose during the treatment is available [3, 4].
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Image guidance technologies are essential to provide accurate information on the ir-
radiated volume and promptly intervene if anatomical changes occur. Cone Beam CT
(CBCT), despite the lower resolution compared to conventional CT scans, rapidly becom-
ing common in clinical facilities also thanks to the help of Artificial Intelligence (AI) [5].
However, these scans have inherent radiation risks and require careful consideration.
Moreover, they can represent a burden to the patient due to repositioning and long time
of acquisition [5-7].

In-beam Positron emission tomography (IB-PET) represents one of the most widely
investigated non-invasive imaging techniques for in-vivo proton therapy monitoring
[8-10]. With IB-PET, data are acquired during or immediately after irradiation inside
the treatment room, avoiding additional time for the treatment and patient reposition-
ing. Recent papers have shown the possibility of detecting anatomical changes utilizing
analytical methods applied to the INSIDE IB-PET data acquired during proton therapy
treatments at CNAO [11-14]. However, the lack of a direct anatomical representation in
IB-PET images is still a critical issue.

The SYNCT project aims to overcome this limitation using AI techniques to cre-
ate sCT images, thus providing direct anatomical information during the treatment
[15-17]. This paper presents a feasibility study carried out in the project framework.
The study is based on planning CT scans and MC simulations of the spatial coordinates
of the annihilations that occurred within six minutes from the start of the treatment
(called activity maps, AMs). A Vision Transformer (ViT) was built and fed with the
planning CT and the simulated AMs from two different fractions of treatments, A and
B, corresponding to six head and neck (H&N) proton-treated patients at CNAO. These
data were used to produce the sCT corresponding to fraction B of the treatment.

2. – Materials and methods

For each of the six patients included in this study, both the planning CT and the
control CT were available. The AMs fractions were obtained with a dedicated FLUKA-
MC simulation tool. We obtained the AMA using the planning CT. It corresponds to
the reference AM, i.e., patient anatomy at the beginning of the treatment course. The
AMB, instead, is obtained by using the control CT, where morphological changes can
be present. We, at the moment, used the AMs instead of IB-PET data to assess the
feasibility of the study, since AMs do not present limitations of instrumentation and
reconstruction, as can be seen in fig. 1. We then post-processed these data to correctly
create and increase the size of the training and test set for the NN. In particular:

1) For each patient we simulated separately each field of irradiation (angle of deliv-
ered dose). In the treatment plan, three irradiation fields at various angles were
prescribed for all patients, except for one with only two irradiation fields. Thus,
based on the number of irradiation fields, number of planning CTs (6) and control
CTs (6) we obtain 17 AMA and 17 AMB.

2) For one patient, we also included in the dataset a set of 5 artificially modified CTs,
each mimicking an increasing amount of air in the sinus cavity [14], leading to 15
additional AMB.

3) All the 2D slices in each view (axial, coronal, sagittal) for each 3D image (CT and
AMs) were used.
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Fig. 1. – (a), (b): slice of the planning and control CT with overlayed the corresponding AMs. In
the red box, the morphological change (very small, just a tiny empty of the sinus) is highlighted.
(c), (d): the same slice but now with the corresponding IB-PET images. The activity present
outside the patient is an example of the limitations present in IB-PET data.

4) We divided each slice into other 100 images (patches), of size 100 × 100, by ran-
domly selecting 100 different centers in the slice.

5) We also used data augmentation techniques (Gaussian filters and random rotations)
to increase the dataset.

Then a pre-trained ViT model, introduced in [18] was used [19]. In our architecture, we
utilized two instances of the model, one for processing the CT data patch, and the other
one for the two AMs patches. For each patch we:

1) Utilized the last attention layer thus obtaining a vector representation of the images.

2) Utilized max pooling layer to reduce the dimension of the vector.

3) Processed this vector with a series of linear layers, with LeakyReLU as activation
function, and dropout layers.

4) Resampled the vector in a 100 × 100 image representing the sCT patch.

We utilized the leave-one-out cross-validation strategy to train and test the network. As
a result, we evaluated the model performance for each patient included in the study.

2
.
1. Evaluation of the sCT produced . – To establish if the sCT produced is a valid

representation of the ground truth (the control CT) we opted to use the Structural
similarity index metric (SSIM) and the Mean Absolute Error (MAE), widely used in
literature [20,21].

We utilized such figures of merit and then compared our results to the others presented
in the following works [22-27] regarding AI-driven techniques to obtain sCT in proton
therapy for H&N cancer patients using CBCT data. From our investigation, the range
values reported in the cited works for the specified figures of merit are as follows: the
MAE spans from 13 HU to 87 HU and the SSIM ranges from 0.90 to 0.93.

3. – Results

In fig. 2 we report an example of sCT obtained with our model. The match between
the sCT (c) and the real control CT (b) is visible. We can see a blurring in the sCT,
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Fig. 2. – Same slice in the (a) planning, (b) control and (c) synthetic CT for one patient included
in the study. The red box highlights the region of morphological change.

compared to the control CT. The blurring is more visible in the bottom right images.
Despite that, the morphological change is reconstructed well by our model.

Utilizing our model, the range values for the MAE and SSIM in the skin region
correspond to: the MAE varies between 9 HU and 26 HU, while the SSIM ranges from
0.87 to 0.96. It is important to note that these values are derived through the application
of a leave-one-out cross-validation strategy, representing the minimum and maximum
values obtained across all patients. The reported values encompass the full spectrum of
performance, reflecting the variability observed in our model.

Our results lie in the range of those reported in the literature [22-27] (MAE: 13–87 HU,
SSIM: 0.90–0.93). Notably, our model demonstrates exceptionally promising outcomes
with lower MAE values compared to those of the literature. This reduction in MAE
signifies decreased errors and a more indistinguishable representation of Hounsfield Units
(HU) in the sCT and real control CT images. Furthermore, the SSIM values underscore
the superior performance of our model, surpassing those found in the literature. This
shows the ability of our model to reproduce structures in the skin region in the generated
sCT images.

4. – Discussion

In this study, we employ vision transformers to seamlessly merge information derived
from planning CT images and the interfractional activity of β+ emitters (AMs) created by
the beam in six proton-treated patients, facilitating the accurate generation of synthetic
CT (sCT) images. Figure 2 shows the almost perfect match between the obtained sCT
(c) and the corresponding real control CT (b). Additionally, we assessed the model’s
accuracy using the metrics widely used in the literature: the MAE and the SSIM. The
results, corresponding to a MAE and SSIM ranking from 9 HU to 26 HU and from 0.87
to 0.96, respectively, demonstrated performance levels comparable to or slightly better
than those reported in the literature (MAE: from 13 HU to 87 HU and SSIM: from 0.90
to 0.93). Based on these considerations, we assert that our model accurately reproduces
sCT images from activity data, confirming the feasibility of our approach.

However, a few observations can be made. First, in fig. 2, the smaller images within the
red contour highlight the sinus area, revealing a subtle emptying of the cavity. Comparing
image c) with image b), we can notice an increase in blurring and a decrease in anatomical
details. The sCT sinus cavity exhibits a slight graininess, which could potentially impact
clinical tasks like contour segmentation and the extraction of sinus shape. However, it
is out of our scope: our sCT serves as a hint for medical personnel to decide when to
correctly prescribe the control CT acquisitions.
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Second, it’s important to acknowledge the limited amount of data and the focus
on only one anatomical district (H&N). While this limitation may not compromise the
quality of the generated sCT, it could affect the generalization of the model to diverse
anatomical regions. Future research will include monitoring PET data of various anatom-
ical regions and pathologies to enhance model validity and mitigate overfitting. Despite
these limitations, this constraint does not compromise the method’s inherent validity.

Lastly, comparing our results to those presented in the literature is challenging. Exist-
ing studies lack investigations into interfractional morphological changes, and the input
data in these studies typically consist of CBCT or MRI images. These images contain
a higher amount of anatomical information and a superior spatial resolution compared
to our dataset, making direct comparisons difficult. Our model has the potential to be
used as a pre-trained model and then further trained on IB-PET data, which, based on
previous works [11-14], contains sufficient information about interfractional changes.

5. – Conclusion

This study demonstrated that planning CT scans and simulated activity of β+ emit-
ters are sufficient to generate high-quality sCT using AI techniques. The sCTs generated
by our ViT model demonstrate good agreement with the expected control CT, as con-
firmed by the values of metrics of similarity, which are comparable or superior to those
reported in the literature. This work paves the way to enabling a non-invasive powerful
tool for online adaptive proton therapy monitoring with IB-PET data.
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