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(4) Centro Ricerche Fusione (CRF), Università degli Studi di Padova - 35127, Padova, Italy
(5) ENEA - 00044, Frascati, Italy
(6) DTT S.C.a.r.l. - 00044, Frascati, Italy

received 31 January 2024

Summary. — An analytical model and numerical simulations of the propagation
and absorption of radio-frequency waves in hot magnetized (2H) plasma are pre-
sented. First, an investigation of the impact of thermal effects on the dispersion
relation of the waves has been conducted by expanding the hot plasma dielectric
tensor to the first order in temperature. Second, starting with the realistic Ion
Cyclotron Heating (ICH) antenna model designed for the Divertor Tokamak Test
project, a simple 1D (1-dimensional) model of the wave propagation has been devel-
oped. The antenna’s spectra have been extracted and analyzed using CSTR©, and
the 1D wave propagation has been performed through MATLABR©.

1. – Introduction

The ion cyclotron resonance heating is a powerful technique used to heat plasma in
fusion devices. It works by leading to resonant absorbtion of high-frequency (range)
electromagnetic waves, launched by radianting structure (antennas), in the plasma ions,
which results in the transfer of energy to the ions. Within the context of thermonuclear
fusion research, the issue of coupling electromagnetic power to a tokamak plasma via
a radio frequency antenna has been studied in the recent past. By defining appropri-
ate boundary conditions, the task is to simultaneously account for a modelling of the
propagative mode inside the plasma and for a thorough geometrical description of the
antenna. Brambilla has adopted a sophisticated and efficient method to address these
issues in the numerical codes FELICE and TORIC [1, 2]. Nevertheless, the description
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of the antenna in both codes is not as precise as it is in TOPICA [3] or COMSOL
Multiphysics R©. In this study, our goal is to develop a simple description of the electro-
magnetic waves propagation in plasma for magnetically confined fusion . This approach
intentionally ignores the slow wave effect and relies on the cold plasma approximation
(it is assumed that the kinetic velocity of particles in plasma is much smaller than the
phase velocity of waves), considering a hot description as a perturbation. The theory
of magnetized cold plasma provides a good description of wave propagation and identi-
fies regions of non-propagation and resonance. Through this approach, it is possible to
explain a wide range of phenomena of interest. However, this approximation has limita-
tions in accurately reproducing the damping of waves, a typically nonlinear process that
manifests as a first-order correction to the cold plasma approximation. To account for
collisionless damping of waves, it is necessary to consider the finite temperature of the
plasma (hot plasma) and adopt a kinetic treatment of the waves. The electromagnetic
(EM) model has been then coupled to an advanced model of the antenna in the Divertor
Tokamak Test (DTT) scenario.

2. – 1D Wave propagation model

In the scenario of a cold plasma (where thermal effects are not considered), the sta-
tionary wave equation arising from the Maxwell-Vlasov model can be expressed as an
exact differential equation

(1) ∇×∇× �E(�r)− ω2

c2
ε
H
(�r) · �E(�r) = 0,

where ω is the antenna frequency, c is the light speed and ε
H
(�r) = (I + 4πi

ω σ
H
(�r)) is the

Hermitian dielectric tensor as function of the radial variable �r. Generally, for a homoge-
neous, stationary, and unbounded thermal plasma, the dielectric tensor can be derived
from the Maxwell-Vlasov system, which, in this case, reduces to a system of algebraic
equations (dispersion relation, refer to [4]). The dielectric tensor is a complex tensor
and its Hermitian (H) component describes propagation characteristics in the complex
domain of frequency and wave-vector, while the anti-Hermitian (A) part accounts for
plasma absorption of power carried by the wave. We have considered a slab plasma in
Cartesian geometry (see fig. 1(a)), where the kinetic profiles (ionic and electronic density,
ionic and electronic temperature, magnetic field) depend solely on the slab coordinate
(indicated as x̂ = r/a along x, where “a” is the minor radius of the plasma). Meanwhile,
in the y (vertical) and z (parallel to the external magnetic field) directions, the plasma is
homogeneous and unbounded. To derive valuable insights from eq. (1) and demonstrate
the solution in a plasma slab, aligning the field with specific boundary conditions set
by the antenna, we focus on eq. (1) under the conditions of a cold plasma and a single
propagative mode (specifically, the fast mode). Additionally, we treat the damping coef-
ficient (anti-Hermitian part of the dielectric tensor) as a perturbation of the Hermitian
part. This approach yields the following second-order differential equation for the Ẽy

component of the electric field:

(2) −∂2Ẽy

∂x2
+

⎡
⎢⎣k2z −

ω2

c2
(εHyy + iεAyy) +

ω4

c4
(εHxy + iεAxy)

2

k2z −
ω2

c2
(εHxx + iεAxx)

⎤
⎥⎦ Ẽy = 0.
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Fig. 1. – (a) Reference frame adopted for propagation model; (b) reference frame of the para-
metric study. Antenna placed at x̂ = 1 and plasma center at x̂ = 0.

2
.
1. Parametric studies in Ideal Tokamak Example. – The eq. (2) highlights which

elements of the tensor matter for the 1D case of interest. Parametric studies have been
conducted on εxx, εxy and εyy with respect to the spatial coordinate x̂ and the parallel
wavenumber nz = kzc

ω (nz = [1, 10]; see [5]). The parametric studies have been carried
out within a DTT scenario [6] (Major radius R0 = 219 cm, minor radius a = 75 cm,
aspect ratio ε = 2.92). The main goal of the parametric studies has been to compare
three dielectric tensor forms: COLD approximation (see [7], chapt. 5 par. 17), Finite
Larmor Radius (FLR) approximation (see [7], chapt. 6 par. 26), and the complete tensor
version, referred to as FULL (see [7], chapt. 4 par. 14). For this purpose, it has been
analyzed a deuterium plasma (2H) with the following density, temperature, and magnetic
field profiles [8-10]:

• Magnetic field profile B(x) = B0R0

R = B0

(1+εx̂) (B0 = 6× 104 G);

• Electronic and ionic density profile ne(x̂) = ni(x̂) = ne0(1−(x̂)2)0.5 (ne0 = 2×1014

cm−3);

• Electronic and ionic temperature profile Te(x̂) = Ti(x̂) = Te0(1− (x̂)2)2 (Te0 = 10
keV).

Figure 2 presents an example of a parametric study conducted on εyy. Specifically,
fig. 2 illustrates the Hermitian and anti-Hermitian components for the FULL, FLR, and
COLD approximations as a function of x̂, with a fixed value of nz = 8. As illustrated
in fig. 2, the anti-Hermitian components of both the FULL and FLR trends coincide,
differing from the COLD approximation in the region near the center of the plasma. In
contrast, the region near the antenna (x̂ = 1) could be effectively described by the latter
approximation. Regarding the behavior of the Hermitian components of FULL, FLR,
and COLD, it is noticeable that near the antenna (x̂ = 1), they are almost identical,
which can be attributed to the low temperatures, where corrections become negligible.
In contrast, at a distance from the antenna (x̂ = 0), the trends no longer coincide. This
parametric study aims to emphasize the effectiveness of the COLD approximation in the
regions near the antenna (x̂ = 1). Nevertheless, when moving towards internal regions
(x̂ < 1), it becomes necessary to shift to a FLR, or preferably, a FULL description
of the electromagnetic tensor for a more precise representation of the propagation and
absorption phenomena of waves in plasma.
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Fig. 2. – Anti-Hermitian (left) and Hermitian (right) parts of εyy(x̂) for nz = 8. Several com-
ponents of εyy are reported: FULL version, FLR approximation, COLD approximation (S-Stix
notation [11]).

2
.
2. The 3-strap antenna field extraction and k-spectra analysis . – To solve eq. (2)

and isolate the terms associated with Ẽy, the fields obtained from the antenna have
been employed. Field extraction has been conducted through CST R© by employing a flat
geometry of the 3-strap antenna. The fields have been extracted at a frequency of 60 MHz
along specific directions, which are useful for subsequent 1D analysis of wave propagation.
In particular, the extracted field component is Ey(z). Fourier transforms have been
carried out using MATLAB’s Fast Fourier Transform (FFT) algorithm. Figure 3 shows
the real and the imaginary parts of Ey extracted along z -axis (2 cm far from the Faraday

Screen along x -axis) and their Fourier transforms (Ẽy).

2
.
3. Solution of the 1D waves’s propagation model: the homogeneous case. – Equa-

tion (2) can be rewritten in the form

(3)
∂2Ẽy(nz, x̂)

∂x̂2
+ δ20 [F̂ (nz, x̂) + iĜ(nz, x̂)]Ẽy(nz, x̂) = 0,

where δ20 = (aωc )2. Equation (3) consists of a coefficient (inside square brackets) that is

composed of a real part and an imaginary part. If we guess that F̂ (nz, x̂) and Ĝ(nz, x̂)
are constant in space (thus implying that density, temperature and magnetic field profiles
are constant in the region closest to the antenna and depend only on nz), the eq. (3) can
be solved analytically. Operating the coordinate change ξ = 1− x̂, the solution is

(4) Ẽy(ξ, nz) = C1e
i
√

bcomplex(nz)ξ + C2e
−i
√

bcomplex(nz)ξ,

where bcomplex(nz) = n2
x0(nz)[1 + iπ1/2ω̂2

ce
v̂the

nzΩ̂2
ce

e
−( 1

nzvthe
)2
] = n2

x0(nz)(α + iβ) and

n2
x0(nz) = −(n2

z − S) + D2

n2
z−S . S and D (see [7], chapt. 5 par. 17) and the thermal

velocity (vthe) have been calculated for density, temperature and magnetic field at the
plasma center. Considering β � α and by imposing the boundary condition at the
antenna (vacuum)-plasma interface (see eq. (5)),

(5) Ẽy(ξ = 0, nz) = ẼA
y (nz),
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Fig. 3. – (Top) Ey(z) field, (Bottom) Fourier Trasform of Ey(z) as a function of nz.

the solution of eq. (3) could by written in terms of progressive and regressive waves with
damping terms (see eq. (6))

(6) Ẽy(ξ, nz) = C1e
i
√
αξe

− β
2
√

α
ξ
+ C2e

−i
√
αξe

β
2
√

α
ξ
.

In fig. 4, a plot of the propagating field Ey in the ẑ-ξ plane(where ẑ = z/a) is shown. The
electric field is plotted in the real space, as a function of the variable ξ. It is clearly visible
the propagation of the field towards the center of the Tokamak, with maximum intensity
starting from the antenna, and a progressive decrease of the electric field amplitude.

2
.
4. Final consideration on 1D homogeneous case. – The conducted study aimed to

comprehend the fundamental characteristics of damping through a simplified analysis.
The considered forms of the F̂ and Ĝ functions are simplifications, as we expect the
combinations of magnetic field, temperature, and density profiles to be neither linear
nor constant. By assuming F̂ and Ĝ to be constant in space, we obtained the simplest
possible solution for the propagation case. However, by introducing spatial dependence
and considering a linear trend, we obtained Airy-like solutions, the results of which will
be presented in future publications.

3. – Conclusion

A one-dimensional model for the propagation and absorption of electromagnetic waves
in plasma has enabled us to explore the interaction between the electromagnetic field
emitted by the RF antenna and the plasma. The antenna’s radiated field has been
examined and computed using the commercial software CST R©, which considers the an-
tenna’s detailed geometry. A basic absorption model (considering a hot description as
a perturbation) has been incorporated into the formulation of the cold wave equation.
This solution is based on a comparative evaluation of the dielectric tensor, carried out



6 C. SALVIA et al.

Fig. 4. – 2D plot of electric field Ey propagated by the antenna into the plasma, where ẑ
represents the spatial coordinate normalized with respect to the minor radius of the antenna a.
Antenna placed at ξ = 0 and plasma center at ξ = 1.

using MATLAB R©. The analysis has been conceived to explore antenna and plasma sce-
narios pertinent to DTT, beginning with an ideal case involving a pure Deuterium (2H)
plasma. This study has enabled us to obtain an example of wave propagation and ab-
sorption in plasma through a simplified approach in a “Homogeneous” case. From the
perspective of wave propagation, this approach may not be as sophisticated as FELICE
or TORIC. However, unlike the latter, it employs an advanced and realistic antenna ver-
sion. This investigation yields valuable insights into the physics of coupling, propagation,
and absorption through a simplified computational approach. It serves as an initial phase
before undertaking a more in-depth investigation using advanced numerical tools (such
as COMSOL Multiphysics R©) in future research and in a more realistic plasma scenario
(for example D-He or D-H).
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