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Summary. — We analyze the coherent energy transfer process between a quan-
tum charger and a quantum battery mediated by a photonic cavity. The analysis is
brought up in the ultrastrong coupling regime, which allows faster transfer perfor-
mances compared to the limiting weak-coupling scenario. In particular, exploiting
higher coupling constant and more and more photons inside the cavity leads to
improved energy transfer performances. Moreover, we consider dissipative effects
due to interactions with environments and we show that in the ultrastrong regime,
thanks to the mediator, it is still possible to achieve great transfer performances.

1. – Introduction

Quantum batteries (QBs) have gained more and more interest since their first ap-
pearance in 2013 when R. Alicki and M. Fannes introduced the first time the theoretical
concept [1]. In particular, the possibility of achieving better storage and transfer of the
energy compared to the classical batteries, thanks to quantum effects [2]. This have
led to several theoretical realistic models and possible experimental implementations [3],
based on simple quantum systems, mostly collections of two-level systems (TLSs), also
known as qubits [4]. This simple system allows to indentify the QB as empty when the
system is in the ground state and as full when the system is in the excited state. Different
scenarios have been considered to charge the QB, i.e., allowing transitions between the
empty and full QB. Most of them have been based on the well known platforms already
used for quantum computations, such as artificial atoms [5] and circuit quantum elec-
trodynamics [6, 7]. In this direction first experimental works have appeared in the last
two years [8, 9]. In this work we consider such systems and analyze the energy transfer
performances [10], by going in the so called ultrastrong coupling (USC) regime, where
a faster transfer from one qubit to the other can be achieved [11]. In particular, we are
considering a cavity as the mediator between a quantum charger and a QB and we want
to prove that by going in the USC regime and adding more and more photons it is possi-
ble to obtain improved energy transfer performances compared to the usually addressed
weak-coupling regime. Moreover, we consider dissipative effects due to interactions with
the environment, in the conventional Caldeira-Leggett picture [12,13], where one bath is
coupled to the cavity and the other one to the QB, to prove the stability of the model.
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2. – Model and figure of merit

In this work, we analyze the energy transfer between a quantum charger (C) and a
QB (B), modeled as TLSs, coupled by means of the photons in the cavity, which play
the role of a mediator (M), in presence of dissipation described by the conventional
Caldeira-Leggett picture [12,13]. The total Hamiltonian can be written as

(1) Htot(t) = H(t) +HR1 +HR2 +HRI1 +HRI2.

Here, the first term H(t) represents the Hamiltonian of the closed system, and it reads
(hereafter we set � = 1)

(2) H(t) =
ωC

2
σC
z +

ωB

2
σB
z + ωMa†a+ gf(t)(a† + a)(σC

x + σB
x ),

where ωC,B are the energy gaps between |0C,B〉 and |1C,B〉 and σC,B
x,z are the Pauli matrices

along the x̂, ẑ directions. Moreover, ωM is the frequency of the photons and a (a†) is the
annihilation (creation) operator of the photons. g represents the interaction strength,
modulated in time by the switch on and off function f(t) = θ(t)− θ(t− τ), where θ(t) is
the Heaviside function and τ is the time for which the coupling is turned on.

The baths Hamiltonians and the baths interaction Hamiltonians are written in terms
of bosonic creation (annihilation) operators b

†(i)
j (b

(i)
j ) as
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where Ω
(i)
j are the harmonic oscillators frequencies and i = 1, 2 indicates the two different

baths. The spectral properties of them are characterized by the spectral functions

(4) J1(ω) =
∑

j

λ2
jδ(ω − Ω

(1)
j ) J2(ω) =

∑

j

κ2
jδ(ω − Ω

(2)
j ).

These equations can be written in the continuum limit and, assuming Ohmic dissipation,
they become [13] (i = 1, 2) Ji(ω) = αiωe

− ω
ωcut . Here, α1 and α2 are the dissipation

strength and ωcut is the cut-off frequency of the baths.
We now comment on the total initial state, assuming that, at time t = 0, the system

and the baths are described by the factorized total density matrix ρtot(0) = ρ(0) ⊗
ρR1(0) ⊗ ρR2(0). In this paper, the initial states of the qubits and cavity, at t = 0, will
be |ψ(0)〉 = |1C, 0B, n〉, where n is the number of photons inside the cavity at the initial
time. The corresponding density matrix will be ρ(0) = |ψ(0)〉〈ψ(0)|. Moreover, the

reservoirs are at thermal equilibrium with density matrices given by ρRi(0) =
e−βHRi

Tr{e−βHRi} ,

with β = 1/(kBT ) the inverse temperature. To solve the complete dynamics associated
to the Hamiltonian in eq. (1) we will apply the routinely used Lindblad equation [14].
For a complete analysis of this argument see ref. [15]. Notice that we have used the
PYTHON toolbox QuTiP [16] to solve the dynamics of the system.
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Before concluding this section, we briefly recall the definitions of the quantities
of interest to characterize the energy transfer performances of the device. The en-
ergy transferred from the quantum charger to the QB can be written as EB(t) ≡
TrS{ρ(t)HB} − TrS{ρ(0)HB}, where HB = ωB

2 σB
z is the QB Hamiltonian, S stands for

the trace over the system, ρ(0) the initial density matrix of the system and ρ(t) is its
time evolved according to the Lindblad equation. Since in realistic situations it is im-
portant to transfer as much energy as possible from the quantum charger to the QB in
the shortest time, it is also useful to define EB,max ≡ EB(tB,max), which corresponds to
the maximum of the stored energy in the QB, occurring at the transfer time tB,max.

3. – Results

In the following we present the main results, starting by considering the case where
no dissipation is present (α1 = α2 = 0). We will confront the results in the weak coupling
regime at the illustrative value g = 0.01ωB and we will compare them with the one in
the USC regime at the representative value g = 0.1ωB. In particular, we will present an
analysis varying the number of photons in the cavity at the initial time of the system.
For sake of clarity, the results will be reported in the resonant regime ωC = ωM = ωB,
but similar results can be obtained for the off-resonant regime [10]. Notice that from
now on we will indicate the closed system results with the apex 0.

In fig. 1 we report EB,max and tB,max as function of n. As we can see in panel (a),
the energy transferred to the QB is generally higher in the weak coupling regime, being
∼ ωB for all the regime, while in the USC the interaction with more photons tends to
have detrimental effects.

Conversely, the time required to transfer the energy from the charger to the QB is
sensibly faster in the USC regime [see fig. 1(b)]. This is quite interesting, since the
advantage is visible even at small values of n, where EB,max is more than 90% and
comparable with the one in the weak coupling regime. Other interesting results in the
USC regime can be seen in presence of dissipation. In particular, assuming the baths at
the same temperature βωB = 10 and two dissipative strengths in the regime of validity
of the Lindblad equation, i.e., 0 ≤ α1,2 � 0.1, we can observe in fig. 2, that the USC
regime is less impacted by dissipative effects. In fact, the weak coupling regime without

Fig. 1. – Behaviour of E0
B,max in units of ωB (a) and behaviour of t0B,max in units of 1/ωB (b)

as function of n. The blue squares represent the weak coupling regime at g = 0.01ωB and the
magenta squares represent the USC regime at g = 0.1ωB. Other parameters are ωC = ωM = ωB,
τ = t0B,max and α1 = α2 = 0.
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Fig. 2. – Behaviour of EB(t) in units of ωB as function of ωBt for the weak coupling regime
at g = 0.01ωB (a) and for the USC regime at g = 0.1ωB (b). We consider different values of
photons inside the cavity: n = 0 (full magenta curves), n = 8 (dashed black curves) and n = 15
(dotted blue curve). Other parameters are ωC = ωM = ωB, τ = t0B,max, α1 = 0.03 and α2 = 0.01.

dissipation lead to an almost complete energy transfer for the considered n. Here, instead,
we observe only values ∼ 50%, improving when more photons are inside the cavity (see
caption for values). The USC regime, allows better performances, but, as observed
without dissipation, the presence of more photons inside the cavity leads to detrimental
effects.

4. – Conclusions

In this work we have discussed the possibility of modeling the energy transfer per-
formances between a quantum charger and a quantum battery mediated by a photonic
cavity. In particular, the ultrastrong coupling regime has been investigated and com-
pared to the usually addressed weak-coupling regime. The first regime allows to improve
the transfer times performances, while the second one allows to obtain a better trans-
ferred energy increasing the number of photons inside the cavity. Moreover, by taking
into account dissipative effects, the ultrastrong coupling regime proves to be more stable
and allows to still obtain great transfer performances.
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