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Summary. — Field emission is a powerful technique to gain insight into the elec-
tronic properties of materials. A strong and ultrashort laser pulse can periodically
modify the potential barrier for electron tunnelling, giving rise to photon sidebands
in the far-field electron energy distribution. The aim of this work is to present a
novel tight-binding approach that simulates the laser-assisted field emission from a
metallic tip taking account also of the electronic features of the emitter. The out-
of-equilibrium electron dynamics of this inhomogeneous system is described using
the Green’s function formalism.

1. – Introduction

The field emission technique has always played a central role in the world of con-
densed matter physics [1]. In particular, nowadays, the emergence of modern laser tech-
nologies [2] has determined a growing interest in the study of ultrafast laser-stimulated
field emission processes, especially for the possibility of generating electronic pulses with
a simultaneous high spatial and time resolution [3-5]. Reaching this aim is subject to
the necessity of identifying the class of materials that could ensure an efficient electronic
emission on a very short timescale.

Here, we present a novel theoretical approach able to reconstruct the energy distri-
bution that laser-driven field-emitted electrons have in a region of space far from the
emitter-vacuum interface, including the properties of the emitter through tight-binding
methods and non-equilibrium techniques.

2. – Model

Let us start from a metallic tip in equilibrium at a temperature T for t → −∞. Due
to a high work-function φ, electrons are confined within the metal until, at t = 0, a
voltage difference |Vpot| is applied between the end of the tip and an electrode, bending
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the step potential barrier and letting electrons tunnel into the vacuum. They can so reach
the far-field region —a region of space sufficiently far from the solid-vacuum interface—
where their energy distribution is measured. Then, at t = t0, an ultrafast laser pulse
is switched on in proximity to the metal-vacuum interface, modifying the barrier profile
and affecting the electronic emission process from the tip. The tight-binding Hamiltonian
that models this situation can be written as follows (the spin index is discarded in this
work):

(1) Ĥ(t) =

T−1∑
i=1

(−ti(t)ĉ
†
i ĉi+1 + h.c.) +

T∑
i=1

(εi(t)− μ)n̂i.

Here T = N+M is the total number of sites of this two-chain system: the first chain (with
N sites) models a very sharp and thin metallic tip; instead, the second one (with M sites)
discretizes the vacuum along the direction of propagation normal to the tip surface [6,7].

ĉi (ĉ
†
i ) annihilates (creates) an electron on the i-th site of such an inhomogeneous (mat-

ter+vacuum) system and, thus, ti is the nearest-neighbor hopping integral between the
i-th and the (i+1)-th site. By considering a homogeneous and isotropic tip, we can put
ti = tm for i < N , where 4tm corresponds to the width of the single-electron band within
the uncorrelated emitting metal (electron-electron interactions are considered negligible).
Similarly, by putting ti = tv for i > N , the energy of an electron with momentum k in
the far-field region, i.e., ε(k) = φ − e|Vpot| + (�k)2/2m, can be properly approximated
by the tight-binding cosine dispersion εff (k) = φ − e|Vpot| + 2tv(1 − cos(kb)), with 4tv
as its band-width and b = �/

√
2mtv as the vacuum lattice constant. In addition, the

term (−tN (t)ĉ†N ĉN+1 + h.c.) lets electrons jump between the last matter site and the
first vacuum one. Indeed, after the switching-on of the voltage difference |Vpot|, electrons
can be emitted into the vacuum from the tip edge and, therefore, this process must be
included in the Hamiltonian. Furthermore, by choosing

tN (t) =

{
tc sin

4(πt/2τad), 0 ≤ t ≤ τad,
tc, t > τad

with τad � t0, we assume an adiabatic preparation of the state reached by the system
after the application of |Vpot|. In the second term of Ĥ, where μ is the chemical potential
and n̂ is the number operator, the mean on-site electronic energy εi is put equal to εm
inside the metal (i ≤ N), while, for i > N , it contains the time- and space-dependent
profile of the barrier V faced by the electrons in the vacuum: εi(t) = 2tv + eVi(t). The

Hamiltonian operator can be so recast in a more compact form: Ĥ(t) =
∑T

i,j=1 ĉ
†
ihi,j(t)ĉj ,

with {H(t)}i,j = hi,j(t) = δi,jεi (t)− t∗i−1(t)δi,j+1 − ti(t)δi+1,j .
To get the energy distribution of electrons in the far-field region, we exploit the

Green’s functions formalism considering the lesser components {G<(t, t′)}i,j = g<i,j(t, t
′)

in the Keldysh framework [8, 9]. Dealing with an independent-particle model, we can
express, at a given time t, the fermionic operators in the Heisenberg picture in terms of
the elements of the complete set {ĉi, ĉ†i}i=1,...,T as ĉi,H(t) =

∑
j ûi,j(t, t

′ → −∞)ĉj , where

ĉ
(†)
i = ĉ

(†)
i,H(t → −∞) and {Û(t, t′)}i,j = ûi,j(t, t

′) acts like a single-particle time-evolution

operator such that i�∂tÛ(t, t′) = H(t) · Û(t, t′). Then, once the far-field submatrix of

G< is computed solving the equation of motion for Û , its elements can be combined in
a Fourier series to get the lesser Green’s function in k-space, i.e., g<k = g<k (t, t

′). The
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mean far-field time-dependent electron energy distribution can be, thus, constructed:
〈n〉 (ε, t) =

∑
k 〈nk〉 (t) = −i

∑
k g

<
k (t, t), where the sum is over all the k-points such that

ε = εff (k). That quantity depends clearly on the electronic bunches that, after being
emitted, propagate towards the detector through time. If we wait enough such that all
the extracted electrons can reach the far-field region (t → ∞), such a distribution will not
depend on time anymore. Thus, from here on, we will focus on the latest-time far-field
energy distribution.

3. – Results

We choose a space decaying barrier profile V = V (x, t), for x ≥ 0 and t ≥ 0.
Moreover, the pulse acts only close to the tip-vacuum interface [6, 7], where it de-
termines oscillations in time of the barrier width Bw [10]. This setting is modelled

with the voltage profile Vi(t) = φ
e − |Vpot|[1 − exp(−(i−N−1)bK

Bw(t) )], for i ≥ N + 1,

K = ln(
e|Vpot|

e|Vpot|−φ ), with time-dependent barrier width Bw(t) = B0
w(1 + F (t)). F (t) =

F cos( 2π
Tper

(t− t0) + ϕ)× exp(− (t−t0)
2

2τ2
P

) identifies the percentage deviation in time of the

barrier width with respect to B0
w, where F ≥ 0 depends on the pulse intensity, while

Tper, ϕ, and τP are the pulse period, phase, and width, respectively. The results of this
work are obtained considering N = 500 matter sites and M = 2600 vacuum ones. A
study is, thus, performed changing Tper and tm. So, we fix εm = μ = 0 eV, φ = 5 eV,
|Vpot| = 10V, tv = 10 eV, and B0

w = 1nm. Furthermore, we focus on the case of an
ultrafast pulse sufficiently intense such that F = 0.9; in addition, t0 = 30 fs, τP = 4 fs,
and ϕ = 0. Finally, τad = 1 fs and tc = 1 eV. Thus, the far-field (i ≥ 900) energy
distribution at t = tfin � t0 is inferred through the aforementioned procedure.

The latest-time far-field energy distributions for tm = 1 eV and for Tper = 0.5, 1,
2 fs are plotted in fig. 1(a). As expected [6], photon sidebands emerge clearly in all the
considered cases. This aspect can be initially appreciated by noticing that, when Tper

Fig. 1. – (a) Latest-time far-field electronic energy distribution for Tper = 0.5 fs (blue points),
Tper = 1 fs (red triangles), and Tper = 2 fs (green crosses), having fixed tm = 1 eV. The energy
distance between two consecutive peaks is plotted with the corresponding ratio R in each case.
(b) Same quantity plotted in (a) for Tper = 1 fs, but with tm = 0.5 eV (blue points), tm = 1 eV
(red triangles), and tm = 1.5 eV (green ×’s). In the insert (c), the metallic (brown sites) and
the vacuum (gray sites) chains are schematically reported along with a sketch of the vacuum
barrier profile (in arbitrary units) faced by the electrons at t = 0 (solid blue line), t = t0 (dashed
red line), and t = t0 + Tper/2 (dotted green line).
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doubles, the distance between two consecutive peaks results to be halved, as the photon
energy does. In addition, by performing a multigaussian fit of the results in each case, the
ratio R of the energy distance ΔE between two consecutive peaks and the corresponding
photon energy εph = h/Tper is approximately 1 in all three illustrative cases. Therefore,
the peaks in the energy distribution can be interpreted as a consequence of different
electronic multiphoton excitations from the solid energy states. In fig. 1(b), it is shown
〈n〉(ε, tfin) for Tper = 1 fs and tm = 0.5, 1, 1.5 eV. In agreement with our predictions,
the positions of the peaks are not substantially affected by the value of tm. On the other
hand, it carries weight in determining the height and width of the photon sidebands.
That feature can be understood considering that, by increasing tm, the solid density of
states results to be broadened in energy and lowered around the Fermi level. Such a
modification is so reflected in the far-field energy distribution with wider sidebands and
lowered peaks, underlying that the solid electronic properties are somehow transferred
in the single-particle energy distribution even if detected very far from the solid itself.

4. – Conclusions

In this work, we have presented a minimal theoretical setup able to simulate the
laser-stimulated field emission of electrons from a metallic tip. The final aim has been
to compute the latest-time far-field electronic energy distribution varying the pulse fre-
quency and the equilibrium density of states of the emitter. From the results, we have
understood that our model is capable of predicting the presence of photon sidebands
in the far-field distribution due to multiphoton excitations of electrons from the tip.
In addition, thanks to the model, it has been possible to appreciate how the far-field
energy distribution is affected by the metallic density of states, pioneering possible in-
terpretations of experimental results in terms of the emitter features. Finally, through
our framework, further studies about the activation of multiphoton excitations could
be carried out, especially for their role in the high-harmonics generation in solids [11].
Particularly, some efforts could be devoted to understanding how the appearance of such
processes is related to the laser pulse properties and whether, in this case, signatures of
resulting non-linear effects become manifest in the matter density of states.
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