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Summary. — We apply the Variational Quantum Eigensolver to the study of the
periodic Anderson model in the atomic limit. After presenting the steps necessary
for the implementation of the algorithm, such as the fermionic mapping of the
Hamiltonian and the construction of the variational ansatz, we will discuss the
results obtained by simulations carried out using resources provided by IBM, as well
as the performance of the chosen ansatz for the considered system, in ideal and noisy
environment. Finally, we apply a simple mitigation scheme to the noisy scenario to
improve the algorithm’s accuracy.

1. – Introduction

The Variational Quantum Eigensolver (VQE) [1] is a quantum-classical algorithm
used to estimate the ground state energy of physical systems. In particular, its hybrid
structure is believed to be useful for problems whose complexity scales exponentially
with the system size. Several applications of this algorithm to relevant physical systems,
such as Heisenberg [2] and Hubbard [3] models, have been presented in the past years.
Here, we apply the VQE to the Anderson impurity model, which describes a rich physics
linked to several relevant phenomena ranging from magnetism to unconventional super-
conductivity to topological properties [4,5]. The paper is organized as follows: in sect. 2
we introduce the Anderosn model together with a brief description of the algorithm em-
ployed to solve the above mentioned model, as well as the principal steps required for
an efficient implementation, such as the fermionic mapping and the construction of the
variational ansatz. In sect. 3 we discuss the result obtained from simulations with and
without quantum noise while the conclusions are summarized in sect. 4.

2. – Model and methods

We will apply the VQE algorithm to the study of the Anderson Model [6] in its atomic
limit, which in the case of a single impurity is described by the following Hamiltonian:

Ĥ =Ĥc + Ĥf + ĤCoul + Ĥhyb

=εc
∑
σ

ĉ†σ ĉσ + εf
∑
σ

f̂†
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∑
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σ ĉσ
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where ĉσ and f̂σ are fermionic operators for conduction and localized electrons respec-
tively, with σ representing the electron’s spin. To efficiently apply the VQE we first
recast the second quantized Hamiltonian (1) in terms of Pauli spin operators. This can
be achieved using Jordan-Wigner mapping [7] after a suitable choice of the ordering
for generic state vector for the system; we specifically choose the following ordering:
|c↑f↑f↓c↓〉. The construction of the variational ansatz represents a crucial choice for the
implementation of VQE: here, we used the Hamiltonian Variational Ansatz (HVA) [8].
We propose the following form for the HVA circuit [9, 10]:

(2) |ψ(θ)〉 =
L∏

l=1

4∏
α=1

exp
[
iθα,lĤα

]
|ψ0〉,

where the {Ĥα} are the terms in Hamiltonian (1), l = 1, . . . , L is the number of circuit
layers and {θα,l} is the set of variational parameters. The initial state |ψ0〉 is chosen as the

ground state of the Ĥhyb term since it has the same quantum numbers as the ground state
of the complete model, thus allowing to search for the energy minimum in a restricted
subspace of the whole system’s Hilbert space. On real quantum devices, computation is
always affected by the presence of quantum noise. It is possible to mitigate these effects
using internal symmetries of the system: indeed, if one finds a unitary operator Ŝ such
that [Ĥ, Ŝ] = 0, then it is possible to define a symmetry-verified state ρ̂s by projecting

the noisy state ρ̂ onto a subspace S of Ŝ [11]. For the Anderson Hamiltonian we applied
this mitigation scheme choosing the fermion parity as unitary symmetry, described by
the operators Ŝσ = (−1)

∑
i n̂i,σ , σ ∈ {↑, ↓}.

3. – Experimental setup and results

Simulations were performed using the following values for the microscopic parameters
of the model: εc = 0, εf = −1, U ∈ {1, 3, 5}, V ∈ (0, 1]. To be specific, in what follows we
present results referring to the case with U = 3 and V ranging from Vmin = 0.1 to Vmax =
1 with steps ΔV = 0.1. Computation has been carried out using the IBM-Qiskit Python
library to simulate the behavior of both ideal and noisy quantum devices. Moreover, we
employed Bayesian optimization [12] as the minimization routine. The analysis focuses
on the convergence of the algorithm’s estimation of the ground state energy as well as
on the relative error achieved. Furthermore, we studied the capacity of the algorithm

to extract the correct ground state by evaluating its fidelity F = Tr(
√√

ρ̂σ̂
√
ρ̂)2, where

σ̂ = |ψexact〉〈ψexact| is the exact ground state. For values of F ≥ 0.99, we can conclude
that the algorithm has successfully found the exact ground state.

3
.
1. Ideal simulations . – In ideal environment we neglect the effects of quantum noise

on the computation and we only consider the errors coming from a limited number of
measurements on the output state of the quantum computer at each iteration of the
algorithm. The proposed ansatz for the model is then capable of obtaining a good
accuracy of the energy estimation, with a relative error of Er � 2% on average using
only one layer, as shown in fig. 1(a). Raising the number of layers to L = 2, 3 gives a
similar result and a similar relative error but in these cases, convergence is reached in a
slightly higher number of iterations due to the increase of variational parameters to be
optimized. Focusing on the output state of the algorithm, we can see in fig. 1(b) how
the fidelity varies throughout the optimization process. We can see that for every layer
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Fig. 1. – Results of the algorithm for the Anderson model: ground state energy and relative error
in (a) ideal environment and (c) noisy environment. For V = 0.5: evolution of ground state
fidelity during the optimization process in (b) ideal environment and in (d) noisy environment.

the estimated optimal state reaches a fidelity of F ≥ 0.99, thus we can conclude that
the algorithm can find the exact ground state for the chosen model and the chosen set
of microscopic parameters.

3
.
2. Noisy simulations . – Noisy simulations have been performed using a noise model

generated from the calibration data of the quantum computer ”Osaka” of IBM. Due to
the noise, mostly coming from the entangling CNOT gates, the ansatz is now unable
to search for the energy minimum in the selected subspace of the total system’s Hilbert
space. As a consequence, the fidelity of the output state reaches its maximum at F ≈ 0.74
for L = 1, with decreasing values for higher layers number, see fig. 1(d). The relative
error achieved on the energy estimation is shown in fig. 1(c). We can see that for L = 1
the relative error is already Er ≈ 15% and the scenario worsens in the L = 2, 3 cases due
to the higher number of CNOT gates required. We reduced the effect of noise using the
symmetry verification scheme, which allowed us to improve the accuracy of the result
obtaining a final relative error on the energy of Emit

r � 10% in almost all cases, as can be
seen in fig. 2(a). The same improvement trend can be seen in the fidelity of the output
state, depicted in fig. 2(b), which now reaches its maximum at F ≈ 0.91.
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Fig. 2. – Comparison between the noisy cases for L = 1: (a) ground state energy and relative
error; (b) evolution of ground state fidelity during the optimization process for V = 0.5.

4. – Conclusions

We have shown how to apply the Variational Quantum Eigensolver to the study of the
Anderson model using the Hamiltonian Variational Ansatz. We have seen that the HVA,
in ideal environment, can find the ground state energy of the model with high accuracy.
Moreover, it is also possible to achieve a high fidelity on the corresponding ground state.
The quality of the results drastically changes in noisy simulations; however, using a
mitigation scheme, we were able to improve both energy estimation and fidelity for the
ground state and its energy. Considering the results obtained, we plan to investigate the
behavior of the algorithm under the effect of quantum noise varying the ansatz circuit and
classical optimization routine. Furthermore, we plan to extend the analysis to lattices
with different geometries as well as to the calculation of the excited states.
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