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Summary. — We present Deep Focus (DF) results on the ALMA image decon-
volution problem for point-like sources. We compare DF reconstruction capabilities
and execution times with those of CLEAN and other Deep Learning algorithms,
showing improvements in reconstruction capabilities with respect to both, and an
average speed-up factor of 280 with respect to CLEAN.

1. — Introduction

The detection of sources within data cubes produced by Radio Interferometers, re-
quires the resolution of an ill-posed inverse problem. This problem entails recovering the
underlying signal G(I, m) from the observed sky D(l,m) in sky coordinates and frequen-
cies. The relationship between the two is described by the Van Cittert-Zernike theorem,

(1) D(l,m)=P(l,m)®@T(,m)® G(,m)+ N(l,m),

where ® is the convolution operator, while P(I,m) and T'(I,m) are the primary and
dirty beams, two operators describing the response function of each antenna and the
interferometric response function of the array, respectively), N(I,m) represents noise,
and [ and m are the coordinates in the image plane. Traditionally, this problem is solved
through the CLEAN algorithm [1], which works by iteratively subtracting a fraction of
the signal convolved by the dirty beam. At the end of the process, this signal is restored
by a “clean” Gaussian beam, hereby removing the sidelobe pattern from the data. The
planned upgrades to ALMA will results in an increase of data collection by roughly a
factor of 100 [2]. Deep Learning (DL) autoencoder-like models (with heads constructed
as ConvNet, ResNet, U-Net, VGG-Net, DenseNet) have been applied to the resolution
of the ALMA deconvolution problem showing comparable performances with CLEAN
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and other traditionally used algorithms [3-7] in case of Gaussian-like simulations. In
this work we build upon the work outlined in [7], and we present Deep Focus (DF) a
meta-learner aimed at optimising the resolution of the ALMA deconvolution problem
by exploring the space of DL models architectures (Architecture Hyperparameter Space,
or AHS). We measure DF Sky Model reconstruction capabilities on simulated ALMA
cubes produced through our simulation pipeline ALMASim [8] showing that it surpasses
the performances of other DL models and CLEAN, and we measure the average pro-
cessing time on 29 x 103 archived real ALMA cubes showing a substantial increase in
processing speed over CLEAN. The article is structured as follows: in sect. 2 we de-
scribe DF, in sect. 3 we discuss ALMASim and in sect. 4 we report our experimental
results.

2. — Deep Focus

Deep Learning models need to be trained, i.e., presented with examples of Observed
and true Sky Models pairs, in order to learn how to approximate the unknown map-
ping between them. Usually, training a model involves the optimization of the so-called
training hyperparameters, i.e., a set of parameters that significantly impact the model’s
learning dynamics, convergence, and generalisation performances. In the context of DF,
we define a point in the AHS as the set of parameters that are needed to fully describe
the architecture of a DL model: number of convolutional layers, number of channels,
kernel size, presence or absence of Skip Connections, Residual Connections, Bottleneck
blocks, Multi-Head self-attention, drop-out, type of pooling strategy. DF takes architec-
tural hyperparameters as input and builds the corresponding DL architecture. Through
Bayesian optimization, DF samples the architectural parameter space in order to min-
imize the problem loss function. Bayesian optimization is a probabilistic model-based
approach for optimizing expensive, black-box functions such as DL models, employing
surrogate models: i.e., the best set of parameters for a given objective is efficiently found
while reducing the number of expensive model evaluations. The DL model is approxi-
mated by by a Gaussian Processes (GPs): y = GP(u,Y) where p(z) and X(x,2’) are
the mean and covariance functions, respectively. The Matérn kernel is chosen as covari-
ance function. The Expected Improvement (EI) has been used as acquisition function:
EI(z) = Elmax(f(z) — f(2'),0)] where f(z) and f(z') are, respectively, the predicted
mean of the objective function at point z, based on the GP, and the best value observed
so far in the optimization process. EI prefers models for which > f(z) (exploitation)
or where the standard deviation o(x) is high (exploration). To speed-up convergence,
we employ parallelisation on multiple GPUs. DF constructs architectures in parallel by
drawing, at each iteration, n samples from the architectural parameter space (where n is
the number of available GPUs). The 2 points maximising p and o(z) are always chosen,
the remaining n — 2 are randomly drawn.

3. — ALMASim simulations

ALMASiIm simulator is built upon the CASA Simulator [9], and allows the creation
of realistic ALMA mock observations of high and low redshift point-like, extended and
diffuse sources. The pipeline works by first generating the Sky Model and scaling it to
the desired brightness. The Sky Model is fed to the simobserve task of CASA. The task
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TABLE 1. — Mean Residual Scores (MRS) obtained on the 1000 Test Set cubes.

DF CLEAN U-Net ResNet-50 DenseNet

mRS 0.0002 0.047 0.012 0.0074 0.0059

simulates an ALMA observation of the Sky Model returning the Measurement Set (MS)
(whose Fourier inversion is the Observed Sky Model). Before inverting it, to simulate
atmospheric and gain induced errors, we modify the MS adding random Phase and
Amplitude errors components. The resulting MS is then Fourier inverted to get the
Observed model and scaled to the Sky Model total brightness. ALMASim was used to
generate 10000 pairs of cubes containing always a bright central point-like source (central
Calibrator) and between 1 and 5 serendipitous sources. Simulations were performed using
Cycle 9 C-3 antenna configuration, band 6.

4. — Results and conclusions

We divided the 10000 cubes in Train, Validation and Test sets (80%, 10%, 10%),
and let DF search for the best performing architecture. To measure the reconstruction
quality we employed the Mean Residual Score (MRS), while to train the architectures
generated by DF, we employed a weighted combination of L; norm and mean Structural
Similarity Index (mSST). CLEAN is run for 10000 iterations, while hyperparameter tuning
is performed on all DL models. DF is trained on 4 Tesla V100 GPUs. Table I shows the
MRSs obtained by DF’s best architecture, CLEAN, U-Net, ResNet-50 and DenseNet,
while fig. 1 shows a direct comparison between the Observed Sky, the true Sky Model,
CLEAN prediction of the Sky model, and that of DF. As can be seen, both CLEAN and
DF can distinguish between noise components, PSF’s side lobes, and the true signal, but
DF is the only one also recovering the true source morphologies. This reflects in the
lower MRS. The computational time measurements are performed running DF inference
on a single V100 GPU, while CLEAN on two Intel Xeon E5-2680. CLEAN takes, on
average, 364 minutes to process a data cube, while DF takes only 1.3 minutes (a speed
up in processing times by a factor 280 on average).
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Fig. 1. — From left to right: Sky Model Image, Observed Image, CLEAN image, DF Prediction
of the Sky Model.
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