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Summary. — We report Quantum Monte Carlo calculations of magnetic moments
for A ≤ 10 nuclei using the Norfolk two- and three-nucleon (NV2+3) chiral inter-
actions and one- and two-body electromagnetic currents. We use low-energy con-
stants (LECs) to parameterize these currents up to next-to-next-to-next-to leading
order (N3LO). We compare two models using different LECs and regulator param-
eterizations. The magnetic moment calculations agree with data for both models
considered.

1. – Introduction

Current and future experiments involving electroweak phenomena such as long-
baseline neutrino oscillations, neutrinoless double beta decay, and precision beta decay
measurements will require theoretical input to eventually make determinations of new
physics. Studying electromagnetic observables, for which data are abundant and in most
cases known with great accuracy, is essential to test nuclear models. Accordingly, deter-
mining model dependencies is vital for the progress of fundamental physics.

We calculate magnetic moments of A ≤ 10 nuclei using Quantum Monte Carlo with
Norforlk two- and three-nucleon interactions and electromagnetic currents. We compare
two models to determine the dependencies of choice of low energy constants (LECs) and
regulators used in the interactions.

2. – Theory

2
.
1. Quantum Monte Carlo. – Determining the magnetic structure of light nuclei

requires the calculation of the many-body ground state. We employ Quantum Monte
Carlo (QMC) methods to solve the Schrödinger equationHΨ(Jπ;T, Tz) = EΨ(Jπ;T, Tz),
where Ψ(Jπ;T, Tz) is the nuclear wavefunction with spin-partiy Jπ and isospin quantum
numbers T and Tz. We perform Variational Monte Carlo (VMC), which utilizes the
variational principle to optimize a wavefunction by minimizing the expectation value

(1) EV =
〈ΨV |H |ΨV 〉
〈ΨV |ΨV 〉

≥ E0,
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Fig. 1. – Leading order NN interaction diagrams in χEFT. Solid lines are nucleons and the
dashed line is a pion.

where E0 is the true ground state energy. The variational ansatz used for the trial
wavefunction is

(2) |ΨV 〉 = S
∏
i<j

⎡
⎣1 + Uij +

∑
i<j �=k

ŨTNI
ijk

⎤
⎦ |ΨJ〉

where S is the symmetrization operator, Uij and ŨTNI
ijk are two- and three-body cor-

relation operators, and ΨJ is a Jastrow-like wavefunction. The correlation operators
reflect short-distance interactions, and ΨJ reflects the longer-range cluster structure of
the nucleus. The variational parameters are embedded in these correlation operators.

2
.
2. Norfolk interaction. – The Hamiltonian in (1) consists of non-relativistic nucleon

kinetic energies and two- and three-nucleon interaction terms. These interactions are
derived from chiral effective field theory (χEFT), a low energy representation of QCD
constrained by chiral symmetry. We use the Norfolk two- and three-body interactions
(NV2+3), which have nucleons, pions, and Δ-resonances as degrees of freedom [1-4].

The long- and medium-range forces are described by pion exchange mechanisms.
Short-ranged forces are given by contact terms, which rely on LECs that capture the
physics at this scale. Figure 1 shows these contributions for leading order (LO) nucleon-
nucleon (NN) interactions.

In this work, we compare two Norfolk models: Ia∗ and IIb∗. Model I (II) uses LECs
determined by fitting NN scattering data up to 125 (200) MeV. Additionally, short- and
long-range regulators are introduced to the interaction, each of which requires a choice of
parameter, denoted Rs and RL. For model a (b), the choice of these parameters is [RL,
Rs] = [1.2 fm, 0.8 fm] ([RL, Rs] = [1.0 fm, 0.7 fm]). The star in both models denotes the
fitting to triton ground state energy and Gamow-Teller matrix element for β-decay [3].

2
.
3. Magnetic moment . – The magnetic form factor can be expressed in an expansion

of magnetic multipole operators ML and total angular momentum of the nucleus J as a
sum over odd angular momentum L:

(3) F 2
M (q) =

1

2J + 1

∞∑
L=1

|〈J ||ML||J〉|2.

The magnetic moment can then be extracted in the low momentum transfer limit
(q → 0) of this form factor. The current j(q) can be expressed as a multipole expansion
of ML [6]. In practice for QMC, the matrix element of the current is evaluated with
respect to a specific state (MJ = J) with a choice of direction of q to isolate the matrix
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Fig. 2. – VMC calculations of magnetic moments for A ≤ 10 comparing N2+3-Ia∗ (blue), N2+3-
IIb∗ (red), and experiment (black). Open circles represent only LO contributions while closed
circles show the total (TOT) N3LO contribution that includes many-nucleon electromagnetic
currents [7, 8].

elements of each ML, which can then be related to the reduced matrix elements of eq.
(3) via the Wigner-Eckart theorem. Since the higher-order multipoles are negligible in
the small q limit, the magnetic moment takes a concise form,

(4) μ = −i
2mN

q
〈JJ | jy(qx̂) |JJ〉

with a choice of coordinates imposed where ẑ is the spin-quantization axis of the nucleus.
We calculated this matrix element at values of small q and fit a polynomial to extract
the magnetic moment.

3. – Results and conclusions

We calculated magnetic moments in light nuclei using VMC and compared two NV2+3
models. Figure 2 shows these results with model Ia∗ (blue), IIb∗ (red), and experiment
(black). The open circles denote only leading order contributions in the electromagnetic
currents, and closed circles denote all contributions up to N3LO. For all nuclei considered
in this work, the magnetic moment calculations at N3LO show good agreement with data.
There is virtually no model dependencies for magnetic moments of the nuclei considered
except for 8B, 9Li, and 9Be, which still have < 5% difference between models at both
LO and N3LO.
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Future work includes performing Green’s Function Monte Carlo (GFMC) to further
improve the VMC results. GFMC involves rewriting the Schrödinger equation in imagi-
nary time, which gives solutions that can then be taken to large imaginary time to project
out the true ground state. These calculations should further improve the ground state
wavefunction and magnetic moment result. We will also perform these QMC calculations
on additional light nuclei 9C and 9B.
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