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Summary. — The theory of heavy ion double charge exchange (DCE) reactions
is recapitulated with focus on Double Single Charge Exchange (DSCE) and Majo-
rana DCE (MDCE) reactions. DSCE reactions are of second–order distorted wave
(DW) character, mediated by isovector nucleon-nucleon (NN) interactions and ma-
trix elements similar to 2ν2β decay. The MDCE process proceeds by an induced
rank-2 isotensor interaction, given by off–shell pion–nucleon scattering, leading to
pion potentials similar to the neutrino potentials in 0ν2β decay.

1. – Introduction

As discussed in depth in ref. [1] for a long time heavy ion Double Charge Exchange
(DCE) reactions were considered as sequential proton and neutron pair transfers. Only
quite recent investigations showed that mesonic DCE reaction mechanisms may prevail
under appropriate circumstances, thus giving access to DCE spectroscopy and nuclear
matrix elements (NME) of structures as encountered in double beta decay. In this con-
tribution, two competing and interfering reaction mechanisms are discussed, namely
nucleon-nucleon (NN) Double Single Charge Exchange (DSCE) and Meson-Nucleon Ma-
jorana DCE (MDCE). Connections to double beta decay (DBD) will be pointed out.

2. – Double single charge exchange reactions

The DSCE mechanism amounts to a conventional distorted wave two-step reaction.
DSCE reactions are a sequence of two single charge exchange events, each of them
mediated by the two–body NN–isovector interaction TNN , the latter acting by one–
body operators on the projectile and the target nucleus, respectively. For a reaction
α = a(Za, Na) + A(ZA, NA) → β = b(Za ± 2, Na ∓ 2) + B(ZA ∓ 2, NA ± 2) the reaction
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Fig. 1. – DSCE interaction diagram (left) and DSCE angular distribution (right) for 40Ca (18O,
18Neg.s.)

40Arg.s. at Tlab = 275 MeV, compared to the NUMEN data [6]. Intermediate states
with angular momenta Jπ = 5± are included, the experimental angular resolution of ±0.6◦

(from [2]) is accounted for. The DSCE cross section obtained by going through only the lowest
Jπ = 1+ state in 40K is shown (dashed line).

amplitude is written down readily as a quantum mechanical second order reaction matrix
element [2]:

(1) M(2)
αβ(kα,kβ) = 〈χ(−)

β , bB|TNNG(+)
aA (ωα)TNN |aA, χ(+)

α 〉.

Initial (ISI) and final state (FSI) interactions are taken into account by the distorted

waves χ
(±)
α,β , depending on the invariant center–of–mass (c.m.) momenta kα,β and obeying

outgoing and incoming spherical wave boundary conditions, respectively. The available
c.m. energy is ωα =

√
saA, saA = (Tlab + Ma + MA)

2 − Tlab(Tlab + 2Ma). We use an
(anti–symmetrized and complex–valued) isovector NN T-matrix with rank–0 central and
rank–2 tensor interactions [3].

Expanding the intermediate many–body propagator G(+)
aA into the SCE–type states

{|c〉} and {|C〉} in projectile and target nucleus, respectively, one obtains [2, 3]
(2)

M(2)
αβ(kα,kβ) =

∑
γ={c,C}

∫
d3kγ
(2π)3

M
(1)
γβ (kγ ,kβ)

S̃†
γ

ωα − Ec − EC − Tγ(kγ) + iη
M (1)

αγ (kα,kγ),

where Ec,C = Mc,C + Tc,C are the total c.m. energies of the intermediate states. Tγ

denotes the kinetic energy related to the (off–shell) momentum kγ . M
(1)
αγ (kγ ,kα) are

the – half off–shell – SCE–amplitudes. S̃†
γ ∼ 〈χ̃(+)

γ |χ̃(−)
γ 〉 is the dual S–matrix element

related to the non–hermitian Hamiltonian of relative motion [2, 4, 5].
In fig. 1 the theoretical DSCE cross section is compared to the measured DCE

angular distributions for the reaction 40Ca (18O, 18Ne)40Ar at Tlab = 275 MeV [6]. A
large spectrum of intermediate states up to Jπ = 5± was included. The magnitude
of the measured cross section is almost perfectly well reproduced without the need for
adjustments by scaling factors.
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Fig. 2. – QRPA response functions for 76Seg.s.(0
+) → 76As(1+) (left) and 76Geg.s.(0

+) →
76As(1+) (right), using the multipole operators T(LS)JM =

(
r
R

)L
[iLYL(r̂) ⊗ σ]JMτ±, R =

1.2A1/3 � 5.08 fm. The self–consistent HFB–plus–QRPA approach of ref. [8] is used with a
discretized continuum in a cavity of radius RC = 120 fm. Results of a conventional spectral
QRPA calculation (discrete lines) and an extended QRPA approach including dispersive self–
energies are compared. Summation of the L = J−1 = 0 strengths up to ω = 60 MeV, the Ikeda
sum rule is SGT (−)− SGT (+) = 33.96 < 3(N − Z) = 36.

As explained in detail in ref. [7] contour integration techniques and a considerable
amount of angular momentum recoupling allow to separate projectile and target NME’s.
As a result, rank–2 nuclear polarization tensors are obtained,

(3) Π
(AB)
(S1S2)SM (p2,p1;ω) =

∑
C

[
F

(BC)
S2T

(p2)⊗ F
(CA)
S1T

(p1)
]
SM

ω − (EA − EC)
,

describing the nuclear response for total spin transfer S = S1 + S2. The striking formal
similarity to the NME of 2ν2β decay is obvious.

In practice, the response tensors are calculated in Quasiparticle Random Phase Ap-
proximation (QRPA) [3, 8]. Spectral distributions for the reaction shown in fig. 1 are
found in [2]. In fig. 2 QRPA response functions for A = 76 nuclei, which are of equally
high interest for DCE and DBD investigations, are displayed. As representative exam-
ples, the Jπ = 1+ Gamow–Teller response functions for 76Seg.s.(0

+) → 76As(1+) and
76Geg.s.(0

+) → 76As(1+) are compared for both orbital angular momentum transfers,
L = J ± 1 = 0, 2. First of all, it is seen that the shape and strength of spectral dis-
tributions depend considerably on the parent system. Secondly, it is of interest that in
both the τ± directions a high lying Gamow–Teller resonance with L = J +1 = 2 around
ω ∼ 25 MeV appears which is not contained in the L = J − 1 = 0 sub–channel response.
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3. – The isotensor Majorana DCE mechanism

If two nuclei are in close contact as in a peripheral ion–ion collision, an effective
isotensor interaction can be generated dynamically. This case is investigated by the
Majorana DCE (MDCE) reaction scenario [1, 5]. As illustrated in fig. 4, the MDCE
mechanism amounts to a pair of virtual (π± → π0 → π∓) reactions. The reacting nuclei
interact by the t–channel exchange of charged pions. A typical scenario is a π± → π0

reaction, inducing SCE–type transitions A(Z,N) → C(Z∓1, N±1), followed by π0 → π±

conversion in a second SCE-transition C(Z ∓ 1, N ± 1) → B(Z ∓ 2, N ± 2). In total, an
off-shell (π+, π−) reaction in one nucleus is accompanied by a complementary (π−, π+)
reaction in the other nucleus.

MDCE is described by the box diagrams shown in fig. 4. The MDCE operator in-
duces two–particle-two–hole (p2n−2) and (n2p−2) DCE transitions, respectively. When
replacing in the MDCE graph of fig. 4 the neutral pions (∼ qq̄) by a pair of Majorana
neutrinos νν̄ and the charged pions by charged leptons, the remarkable topological sim-
ilarity to 0ν2β decay is recognized. Although the MDCE and DBD transition operators
are not fully identical, they probe the same transitions and wave functions.

MDCE pion-nucleon dynamics is completely different from the DSCE NN–
interactions. In the energy region relevant for the MDCE process the (off-shell) isovector
pion–nucleon T-matrix TπN is described adequately by the operator structure

(4) TπN =

[
T0 +

1

m2
π

(T1p · p′ + iT2σ · (p× p′))

]
Tπ · τN .

The energy–dependent vertex form factors T0,1,2 are determined by πN S– and P–wave
interactions, dominated by the formation of N∗ resonances of isospin I = 1

2 ,
3
2 . T0 is given

by S–wave resonances with Jπ = 1
2

−
, while for T1,2 P–wave resonances, Jπ = 1

2

+
, 3
2

+
, are

essential, including, e.g., Δ33(1232) and the Roper resonance P11(1440). Convergence of
the (off–shell) interactions is achieved by including resonances up MN∗ ∼ 1800 MeV.

The key elements for spectroscopy are the nuclear matrix elements WAB = W12 and
Wab = W34, describing the vertical left and right branches, respectively, of the graph
shown in fig. 4. They depend on the external momenta p1,2 attached to the charged
pions. The MDCE transition form factor is given by

(5) WAB(p1,p2) = −
∑
C

∫
d3k

(2π)3
MBC(p2,k)

1

k2 +m2
π − ω2

CA

MCA(k,p1),

where the summation extends over the intermediate SCE–type configurations C. The
two charge–converting processes are described by MCA(k,p) = 〈C|eiqi·rT̃πN (k,p)|A〉
and correspondingly for MBC .

The pion rest mass mπ ∼ 139 MeV defines a natural separation scale allowing to
evaluated the NME safely in closure approximation, by which we obtain the pion potential
[1]

(6) Uπ(x|p1,2σ1,2) = −
∫

d3k

(2π)3
TπN (p2,k|σ2)

eik·x

k2 +m2
π0

TπN (p1,k|σ1).
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Fig. 3. – The MDCE pion potentials for collinear p1||p2 momenta at p1 = p2 = 50 MeV/c
(upper row) and p1 = p2 = 500 MeV/c (lower row). Integrals are regularized by dipole form
factors with a hard cut-off Λ = 2000 MeV/c. Angular integrations can be carried out in closed
form. The remaining k–integrals, given by products of ordinary or spherical Bessel functions,
respectively, and Legendre functions of the second kind multiplied by powers of k, have to be
evaluated numerically.

The (two–body) transition form factor becomes

(7) WAB(p1,p2) = −〈B|e−ip2·r2Uπ(x|p1,2σ1,2)e
ip1·r1T2±2|A〉,

including the rank–2 isotensor T2±2 = [τ1 ⊗ τ2]2±2.
Uπ(x) consist in general of nine terms, reducing in collinear kinematics p1||p2 to six

independent scalar form factors, Uij(x|p1, p2) ∼ TiTj , i ≤ j = 0, 1, 2. Typical results for
Uij are shown in fig. 3. The S–wave terms U00 ∼ T 2

0 dominate the diagonal potentials,
but the mixed S–/P–wave components U0j (j = 1, 2) are of comparable magnitude.
This has important implications for future spectroscopic studies, because both non–
spin–flip Fermi–type transitions and spin–flip Gamow–Teller-type modes as well as mixed
transitions will be excited in MDCE reactions.

The s–channel π0 exchange between the two intranuclear interaction vertices estab-
lishes a two–nucleon short–range correlation where the correlation lengths never exceeds
40% of the range of pion exchange. First preliminary results, neglecting the non–diagonal
pion potentials and not taking into the coherence of the MDCE and the DSCE reaction
amplitudes, are shown in fig. 4. Remarkably, the angular region of fig. 4 covers momen-
tum transfers up to 500 MeV/c.

4. – Summary

A fully microscopic theory of heavy ion DCE reactions was presented, including se-
quential DSCE and direct MDCE contributions. The DSCE amplitude is of a in principle
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Fig. 4. – The MDCE box diagram (left) and the DSCE and MDCE cross sections compared
to the NUMEN data for 40Ca (18O, 18Ne40g.s.Arg.s. at Tlab = 275 MeV [6]. The MDCE cross
section is evaluated in closure approximation and contains only contributions from the diagonal
pion potentials, also being normalized arbitrarily to the forward angular distribution. Results
are folded with the experimental angular resolution of ±0.6◦.

well known two–step structure. The MDCE process, however, relies on a hitherto un-
known mechanism, namely a dynamically induced rank–2 isotensor interaction. The
DSCE nuclear matrix elements are given by nuclear polarization tensors, occurring also
in 2ν2β decay. In MDCE closure approximation, pion potentials and nuclear matrix
elements are obtained close to those encountered in 0ν2β decay. In principle, the MDCE
process can also proceed by rho–mesons or a combination of pions and rho–mesons.
However, explicit calculations show that pion–MDCE dominates by far.

∗ ∗ ∗
Support by DFG, grant Le439/16 and INFN–LNS Catania is gratefully acknowledged.

REFERENCES

[1] Cappuzzello F. et al., Prog. Part. Nucl. Phys., 128 (2023) 103999.
[2] Bellone Jessica I., Burrello Stefano, Colonna Maria, Lay Jose-Antonio and

Lenske Horst, Phys. Lett. B, 807 (2020) 135528.
[3] Lenske Horst, Bellone Jessica I., Colonna Maria and Lay Jose-Antonio, Phys.

Rev. C, 98 (2018) 044620.
[4] Lenske Horst, Int. J. Mod. Phys. E, 30 (2021) 2130010.
[5] Lenske H., Cappuzzello F., Cavallaro M. and Colonna M., Prog. Part. Nucl. Phys.,

109 (2019) 103716.
[6] Cappuzzello F., Cavallaro M., Agodi C., Bondi M., Carbone D., Cunsolo A. and

Foti A., Eur. Phys. J. A, 51 (2015) 145.
[7] Lenske Horst, Bellone Jessica, Colonna Maria andGambacurta Danilo, Universe,

7 (2021) 98.
[8] Lenske Horst and Tsoneva Nadia, Eur. Phys. J. A, 55 (2019) 238.


