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CQARCHAEO: A PYTHON PACKAGE  
FOR COSINE QUANTOGRAM ANALYSIS  

AND MONTE CARLO SIMULATIONS

1. Introduction

In 1974, D.G. Kendall published a seminal article addressing the archae-
ological challenge of identifying the presence of a ‘quantum’ in a numerical 
sample when its size is not known in advance. Using the case study of mega-
lithic sites and testing the hypothesis that many dimensions were expressed in 
terms of a 5.44 ft (1.66 m) quantum, Kendall designed a statistical technique 
– Cosine Quantogram Analysis (CQA) – to assess the potential presence of 
one or more basic units in a sample.

The CQA, often integrated with Monte Carlo simulation, has been exten-
sively employed in archaeology for studying prehistoric weight systems (e.g. 
Petruso 1992; Pare 1999; Rahmstorf 2010; Pakkanen 2011; Hafford 
2012; Ialongo et al. 2021) and weight-regulated money (Ialongo et al. 
2018; Ialongo, Lago 2021; Montalvo-Puente et al. 2023), becoming the 
standard methodology for metrological studies. Before drawing any meaning-
ful interpretation on CQA results, it is necessary to assess their significance 
in statistical terms. This evaluation is customarily conducted by running a 
Monte Carlo simulation, that is, by performing CQA on a certain number – 
conventionally not less than 100 – of randomized datasets (Kendall 1974).

The Monte Carlo simulation (see § 2.5), when performed without the 
assistance of programming languages, would require the manual repetition of 
mechanical operations. In addition to the evident inefficiency of the process 
– e.g., user-driven repetition may more easily lead to errors – the action may 
also involve a considerable time investment. Possible automation of the process 
could be achieved using macros integrated into spreadsheets. However, the 
optimal solution in terms of computational power and speed is only attain-
able through programming. Furthermore, since both Cosine Quantogram 
Analysis and Monte Carlo simulations are performed on the same sample and 
are integral parts of the same method, it is desirable to conduct the analyses 
within the same environment. While there are freely downloadable spread-
sheets and an R package (https://github.com/maciejkasinski/quantatools/) 
for performing CQA (Ialongo 2019; Poigt 2022, 88), there is currently no 
equally straightforward way to perform the Monte Carlo simulation within 
the same analysis environment.

To fill this gap, we have developed a freely downloadable Python package 
(CQArchaeo) designed for researchers with some programming experience. We 
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have created a guided version of the script to run with Google Colab, suitable 
for researchers with minimal programming knowledge. More experienced 
programmers have access to the source code and can modify it according to 
their research needs (https://zenodo.org/records/10658914). This package 
enables the setting and execution of CQA and Monte Carlo simulations in 
a few seconds, allowing users to export results to a spreadsheet or print the 
‘Quantogram’ along with the corresponding significance level. This package 
belongs to the category of so-called Little Minions, small collections of scripts 
that simplify specific tasks, often created by the research team itself (Thiery 
et al. 2021), but made available and downloadable via software sharing 
platforms such as GitHub (https://github.com/).

In this article, we outline the rationale of CQA and Monte Carlo sim-
ulations applied to archaeological data and the interpretation of the results. 
We illustrate the functionality of the Python package and offer detailed 
instructions for its proper use. We show various examples of application on 
archaeological data, and finally, we discuss the applicability and limitations 
of the analyses.

2. Methods: Kendall’s formula and Monte Carlo simulation

2.1 Cosine Quantogram Analysis

CQA is used to determine whether the presence of one or more basic 
units can be hypothesized within a numeric sample. It is based on Kendall’s 
formula (1974):
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where N is the sample size, q is the targeted quantum, and ε is an error component. Each element i is 

divided for the tested quantum q, and ε is the reminder of this operation. The error component ε is 

tested in a way that gives a score ranging between 1 (perfect fit, obtained when ε is =0 or very close 

to q), and -1 (no fit, obtained when ε is exactly in the middle between 0 and q) (IALONGO, LAGO 2021, 

5), and the individual scores of each error component are summed. Different quanta in an arbitrarily 

defined range are tested simultaneously, and the results are plotted in a graph that commonly goes by 

the name of ‘Quantogram,’ with the y-axis representing ϕ(q) (the test statistic), and the x-axis 

representing the quantum scale. Higher peaks of ϕ(q) indicate possible basic units in a numerical 

dataset. 

where N is the sample size, q is the targeted quantum, and ε is an error 
component. Each element i is divided for the tested quantum q, and ε is the 
remainder of this operation. The last part of the formula tests the error com-
ponent ε for each single measurement in the sample of for each quantum in the 
analysis-range, is tested in a way that gives a score ranging between 1 (perfect 
fit, obtained when ε is =0 or very close to q), and -1 (no fit, obtained when 
ε is exactly in the middle between 0 and q) (Ialongo, Lago 2021, 5), and 
the individual scores of each error component are summed. Different quanta 
in an arbitrarily defined range are tested simultaneously, and the results are 
plotted in a graph that commonly goes by the name of ‘Quantogram,’ with 
the y-axis representing ϕ(q) (the test statistic), and the x-axis representing 
the quantum scale. Higher peaks of ϕ(q) indicate possible basic units in a 
numerical sample.
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The CQA requires the preliminary setting of three parameters: 1) the range 
of values of the archaeological sample to analyze (henceforth ‘analysis-range’), 
2) the range of quanta to test (‘quantum-range’), and 3) the interval between 
each tested quantum (‘quantum-step’). All parameters are entirely arbitrary, but 
they partly depend on the actual extension of the sample to be analysed, and 
foremost on the initial guess of the approximate value of the relevant quantum 
one expects to find (i.e., the unit of measurement), as well as on the standard 
error of the measurement system one is trying to determine. In general, the 
choice of the analysis-range, quantum-range, and quantum-step depends on 
the hypothesis being tested through the analysis. Here we clarify how these 
settings work, by using past research on Bronze age weight systems in Western 
Eurasia as an example.

2.2 Setting the analysis-range

The analysis-range is an arbitrary sub-sample drawn from the complete 
sample of measurements. Extracting a sub-sample is a necessary step to exclude 
measurements that are either too much smaller or too much bigger than the 
expected best-fitting quantum. Simply ‘feeding’ the complete sample to the 
formula would determine the risk of producing false positives or false nega-
tives. Before preparing the sub-sample, it is good practice to have an initial 
guess about the approximate value of the potentially relevant quantum one 
expects to identify. For example, when it comes Bronze age Western Eurasia, 
substantial research of the past 50 years or so has confidently established an 
overall interval for weight units ranging approximately between 8 g and 15 g 
(Ialongo et al. 2021). Once the initial guess q is defined, it is important that 
the analysis-range complies with two rules-of-thumb: 1) the minimum value 
of the analysis-range is only slightly smaller than the initial guess, and 2) the 
standard error of the maximum value of the analysis-range is not bigger than 
the initial quantum guess.

Setting the minimum value properly (imin) is crucial as it significantly 
limits the chance of obtaining false negatives (Ialongo, Lago 2021). By 
testing measurements that are too much smaller than the guessed unit, in 
fact, one would inevitably obtain negative ϕ(q) scores. This is to say that, if 
we were to test a potentially relevant quantum of c. 10 g, we would inevita-
bly obtain negative scores for every measurement in the analysis-range that 
is substantially smaller than 10 g. In a way, it would be like calculating the 
average height of the population of a country without excluding pre-adult 
individuals from the calculation. As a rule-of-thumb, imin should be smaller 
than the initially-guessed quantum q but bigger than q/2.

The maximum value of the analysis-range (imax) has a much smaller im-
pact on the results of the analysis than imin does. However, the reason why imax 
should be set properly is that a potentially relevant small quantum (relatively 
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to the analysis-range) is likely not significant for measurements that are much 
bigger than the relevant quantum itself. The reason for this is that equal-arm 
balances (i.e., the only type of scales that existed in the Bronze age) always 
produce a measurement error that is relative to the mass of the object being 
weighed. This can lead to a situation in which a given quantum that is a good 
fit for small measurements can eventually become smaller than the standard 
error of bigger measurements, hence invalidating its significance for larger 
numbers. Let us consider an example accounting for the standard error of 
Bronze age weight systems, calculated based on textual, archaeological and 
experimental evidence as a Coefficient of Variation of c. 5% (Ialongo et al. 
2021). A weight unit of 10 g ± 5% (i.e., 9.5 – 10.5 g) will be a very good fit 
for a measurement of 20 g ± 5% (19 – 21 g). However, it would be a much 
less accurate descriptor for a measurement of 200 g ± 5% (190 – 210 g), as 
it would be approximately equal to its error, which, in practical terms, means 
that we will never know if that measurement was intended to be 19, 20, or 
21 times the unit.

A good rule-of-thumb for choosing the value of imax is taking into account 
the standard error of the system we are attempting to analyse, and make 
sure that the error of imax is at most roughly equal to the initial guess for the 
relevant quantum:
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where q is the initial guess for the relevant quantum, and k is the known standard error of the system 

of measurement under analysis. For the known range of Bronze age weight units (c. 8 g – 15 g), an 

analysis-range of imin=7 and imax=200 provides consistent results throughout Western Eurasia. 

 

2.3 Setting the quantum-range  

 

The quantum-range defines the range of tested quanta that is eventually showed on the graph. 

As far as the aim of the analysis is simply to display potentially relevant peaks – without testing for 

statistical significance – there is no particular recommendation. In general, it would make sense to 

centre the quantum range around the value of the guessed relevant quantum, as this would provide 

greater visual clarity. In addition, the range should not be too stretched forwards or backwards, as – 

where q is the initial guess for the relevant quantum, and k is the known 
standard error of the system of measurement under analysis. For the known 
range of Bronze age weight units (c. 8 g – 15 g), an analysis-range of imin=7 
and imax=200 provides consistent results throughout Western Eurasia.

2.3 Setting the quantum-range

The quantum-range defines the range of tested quanta that is eventually 
showed on the graph. As far as the aim of the analysis is simply to display 
potentially relevant peaks – without testing for statistical significance – there 
is no particular recommendation. In general, it would make sense to centre 
the quantum range around the value of the guessed relevant quantum, as this 
would provide greater visual clarity. In addition, the range should not be too 
stretched forwards or backwards, as – for the reasons discussed above – any 
potential peak that is too much bigger or too much smaller than the guessed 
quantum is at risk of being a false positive.

When the aim of the analysis is to obtain a test of statistical significance, 
however, it would be good practice to limit the quantum-range to a relatively 
small interval centred symmetrically around the peak that one wants to test. 
This is recommended, as the largest the interval, the likelier is for the Monte 
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Carlo simulation (see below) to obtain extreme values that may not be re-
lated to the value one wants to test. It follows that the final quantum-range 
for a Monte Carlo simulation should be set only after it is observed that the 
CQA actually produces an ‘interesting peak’ that is deemed worth testing. 
A good rule-of-thumb is to set the peak that one wants to test at the centre 
of the graph’s x-axis, and set the quantum-range between c. 0.5 – 1.5 times 
the peak value. For example, if one wants to test a peak value of c. 10 g, the 
quantum-range should be set between c. 5-15 g.

2.4 Setting the quantum-step

Finally, the script also requires to define an incremental step for the range 
of quanta. This setting is entirely arbitrary, while keeping in mind that the 
smaller the step, the more detailed the analysis will be, but the more quanta 
are tested, the heavier will be the computational load and hence, the longer 
the time for the script to be executed. It is important to choose a step that 
is short enough to test a sufficient number of possible basic units, while not 
being excessively detailed, considering the characteristics of the values in the 
sample (integers, numbers with decimals, etc.).

2.5 Monte Carlo simulation

The Monte Carlo simulation involves generating a conventional number 
of datasets by randomizing the values of the original sample, and testing each 
of them individually through CQA. The script records the highest ϕ(q) value 
obtained in each iteration of the analysis and, at the end of the simulation, it 
counts how many simulations yielded a ϕ(q) value greater than that recorded 
for the original sample. The null-hypothesis is that the observed CQA results 
are simply generated by chance. i.e., they are not significant. The goal of the 
Monte Carlo simulation is to assess the likelihood that a slightly different dataset 
can give equal or better results than the real sample. The rationale is that, if a 
random dataset can give higher values of ϕ(q), than one cannot exclude that 
the peaks observed in the archaeological sample are simply due to chance. The 
script uses the two conventional significance (α) thresholds of 1% and 5%, and 
displays them as horizontal lines directly on the graph, which allows one to 
visually assess the results: if the peak given by the CQA is higher than the 1% 
and 5% thresholds, it means that there is a probability of, respectively, less than 
1% and 5% that the observed peak is due to chance. Therefore, the null-hy-
pothesis is rejected if the archaeological sample exceeds the established α level.

3. Methods: from the Kendall’s formula to programming

We have developed a Python script that takes as input a spreadsheet 
(CSV or XLSX) containing the data to be analysed. The input dataset should 
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be a spreadsheet with a single column and a header row. It can include either 
integer numbers or float numbers with decimals preceded by a point (i.e., not a 
comma). The user needs to determine the data range to include in the analysis 
by setting the parameters of min_value (imin) and max_value (imax); the range 
of quanta to test by setting the parameters of min_quantum, max_quantum, 
and the step; whether to perform the Monte Carlo simulation (Montecar-
lo_sim = True) or not perform it (Montecarlo_sim = False). The Monte Carlo 
simulation has user-adjustable parameters, including the percentage to use 
for data randomization (mc_randomization), set by default to 15% (0.15), 
and the number of simulated datasets to create (mc_iterations).

After the parameters are set, the sample size N of the dataset is calculated 
based on the desired range. This allows for the computation of a coefficient 
used in the analysis, expressed in the first part of the Kendall formula. To 
solve the second part of the formula:

slightly different dataset can give equal or better results than the real dataset. The rationale is that, if 
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a pandas DataFrame is populated with all the results obtained by testing each element for every 

quantum. The results obtained for each quantum are summed and populate the column of a DataFrame 

a pandas DataFrame is populated with all the results obtained by testing 
each element for every quantum. The results obtained for each quantum are 
summed and populate the column of a DataFrame named ‘Phi_q_values’. 
On the row with the same index, in the ‘Quanta’ column, there is the corre-
sponding quantum for each sum.

In the final graph, there will be a plot of the ϕ(q) values for each quan-
tum and a vertical line corresponding to the best quantum. The user can set 
the α level at 1% or 5% and plot it on the output graph as a horizontal line 
corresponding to the threshold value of ϕ(q).

4. CQArchaeo: instruction for use

The package is implemented using the Python programming language 
(https://www.python.org/) and is supported by a number of dependencies, 
including NumPy (https://numpy.org/) for scientific computing and data 
management, Pandas (https://pandas.pydata.org/) for tabular data manage-
ment, and Matplotlib (https://matplotlib.org/stable/) and Seaborn (https://
seaborn.pydata.org/) for plotting and visualisation. Although the package 
does not have a graphical interface, a number of precautions have been 
taken to make it as user-friendly as possible. Installation of the package is 
facilitated by the presence of the library in the PyPI online repository (https://
pypi.org/). To install the package, simply use the following command in a 
terminal.

https://www.python.org/
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/stable/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://pypi.org/
https://pypi.org/
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pip install cqarchaeo

the command will install the package and its dependencies. For conve-
nience, we recommend using the Anaconda distribution (https://www.
anaconda.com/) and creating a specific environment. To use the functions 
and perform the analysis, we recommend the use of Jupyter notebooks 
(https://jupyter.org/). These files allow Python code to be placed in cells that 
can be executed individually, providing a simpler, more intuitive interface 
that can be easily shared and can contain text, images, links and so on, 
in addition to code. Each code snippet provided from here on represents 
a single cell in the Jupyter notebook. For ease of use, a pre-compiled 
Jupyter notebook is available on the project home page, which can be 
easily modified to suit the user’s needs thanks to its pre-defined structure. 
Returning to the code and structure of the package, functions need to be 
imported and used:

from cqarchaeo import CQAnalysis, compare_quantograms

Once the functions have been imported, we can create an instance of the 
CQAnalysis class named cqa with user-defined parameters.

cqa = CQAnalysis(data = ‘measures.xlsx’, min_value = 7, 
max_value = 200, min_quantum = 4, max_quantum = 24, step 
= 0.02, Montecarlo_sim = True, mc_parameter = 0.15, mc_it-
erations = 100)

Inside the parentheses are all the arguments that can be customised 
by the user: the date parameter indicates the path to the XLSX or CSV file 
containing the measurements (see § 3), while the other elements represent 
parameters specific to the analysis, such as the measurement range to be taken 
into account (min_value and max_value) and the limits of the quanta to be 
tested (min_quantum and max_quantum), together with the step defining 
the progressive number of quanta to be tested (step). These parameters have 
default values defined when the package was created but can be defined at will 
and in relation to the data to be analysed. The next parameters relate to the 
Monte Carlo simulation: it is possible to decide whether it should be carried 
out (Montecarlo_sim = True) and to set a number of parameters, including 
the number of iterations (mc_iterations = 100). The cqa variable created is 
an instance, which in a sense contains all the data and other functions that 
can be realised from that data. For example, it is possible to save the table of 
quanta and the corresponding ϕ value using the CQAnalysis.save_quanta() 
method, which allows the table of values to be saved in XLSX or CSV format.

In the case of our example:

cqa.save_quanta()

https://www.anaconda.com/
https://www.anaconda.com/
https://jupyter.org/
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It is also possible to plot the quantomgram via the CQAnalysis.plot_
quantogram() method:

cqa.plot_quantogram(figsize=(10,6), plot_best_quantum=True, 
save=False, dpi=300, plot_alpha_5=True, plot_alpha_1=False)

This method has a number of customizable parameters, including the 
possibility to specify the plot width and height (in inches), save the image in 
PNG format, and display the confidence intervals of the Monte Carlo sim-
ulation (plot_alpha_1, plot_alpha_5). Finally, a function was developed to 
compare different quantograms. This is particularly interesting as it allows a 
number of distributions to be plotted on a single graph to compare them and 
check for any overlapping peaks. This function is useful when comparing 2 
or more quantograms, which can be done as follows:

cqa1 = CQAnalysis(data = ‘data1.xlsx’, args, kwargs)
cqa2 = CQAnalysis(data = ‘data2.xlsx’, args, kwargs)

where data1.xlsx and data2.xlsx are the data to be analysed and args, kwargs 
are the customizable parameters. It should be emphasized that to get the best 
results from this type of analysis, the parameters must be the same for both 
instances. We can now use the function:

compare_quantograms(quantogram_list = [cqa1, cqa_2], 
figsize=(10, 6), color_list=[“black”, “green”], al-
pha_list=[0.2, 1],label_list=None, plot_montecarlo_
bound=[True, True])

Note that most parameters take as input a list (in this case [cqa1, 
cqa2]) containing the two CQAnalysis instances. The different parameters 
(colour_list, alpha_list, plot_montecarlo_bound) must be lists of the same 
length as quantogram_list, where the first element corresponds to the first 
element of quantogram_list, the second element to the second element of 
quantogram_list, and so on. The function allows to save the image in PNG 
format with the save parameter. The full documentation and examples can 
be found on the project page (https://github.com/lrncrd/CQArchaeo), along 
with a link for the example notebook to Google Colab (https://colab.research.
google.com), a platform for running Python code online, which can be used 
to test the package or perform analysis without having to download any 
additional programs to your own computer.

5. CQA in archaeological research

In this section, we present some archaeological case studies, highlighting 
situations where the CQA yields positive results; negative results; false negative 

https://github.com/lrncrd/CQArchaeo
https://colab.research.google.com
https://colab.research.google.com
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Fig. 2 – Examples of Western Eurasian balance weights of the Bronze age: A) spool-shaped weights 
from Tiryns, Greece (photo L. Rahmstorf); B) cubic weights from Dholavira, India (photo E. As-
calone); C) duck-shaped weights from Susa, Iran (photo E. Ascalone); D) parallelepiped weights 
from Lipari, Italy (photo N. Ialongo) (from Ialongo et al. 2021).

Fig. 1 – Fragmented, semi-finished and complete bronze objects from Late 
Bronze age battlefield of Tollense Valley (photo V. Minkus; courtesy of T. 
Terberger) (from Uhlig et al. 2019).
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Fig. 3 – CQA and Monte Carlo simulations of weight (in grams): A) European Late Bronze age 
bronze fragments; B) European Bronze age balance weights; C) Late Bronze age hacksilver from 
Near East; D) Late Bronze age balance weights from Near East. Range (7-200 gr). Range of quanta 
(A-B: 4-16; C-D: 2-14). Step: 0.02.

results; false positive results. We use databases containing archaeological 
data that have already been published and are freely downloadable from the 
supplementary materials of the referenced articles.

5.1 Positive results

The most significant results of CQA in archaeology have been achieved 
in the study of weight systems and weight-regulated money. For example, the 
Eurasian Bronze age balance weights follow fairly clear sequences of mul-
tiples, consistent with various basic units in different regions (the complete 
data for the Indus valley, Mesopotamia, Aegean-Anatolia, and Europe were 
recently collected by Ialongo et al. 2021) (Fig. 2). In some of these regions, 
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forms of money based on the weight-based fragmentation of metal have 
been recognized, following exactly the same system of multiples of balance 
weights (Europe: Ialongo, Lago 2021; Mesopotamia: Ialongo et al. 2018) 
(Fig. 1). The CQA confirms the existence of a possible basic unit, which is 
further validated by the Monte Carlo Simulation (1,000 iterations, α=0.01; 
α=0.05) (Fig. 3).

5.2 Negative results

For its purposes, the CQA works well for quantal distributions but 
yields negative results for other types of distributions. The null hypothesis for 
each CQA analysis is that the sample is randomly generated, and therefore 

Fig. 4 – CQA and Monte Carlo simulations of weight (in grams): A) random numbers with uniform 
distribution; B) numbers with log-normal distribution; C) Ecuadorian axe-monies. Range (A-B: 
7-200; C: 3-30). Range of quanta (A-B: 4-16; C: 1-8). Step: 0.02.
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the observed peak is due to chance. In Python, we create two DataFrames: 
one containing 1,000 numbers generated randomly to follow a uniform dis-
tribution using the function provided within the numpy library’s ‘random’ 
module, and the other containing numbers generated to follow a log-normal 
distribution using the ‘lognormal’ function within the same module. The re-
sults clearly show that the best quanta are, in fact, peaks of random values, 
well below the α level calculated with the Monte Carlo simulation (Fig. 4).

In the case of archaeological data, especially for pre-literate societies, we 
often do not know the processes that led to the formation of the data. How-
ever, we can hypothesize and test our assumptions. In the field of pre-contact 
archaeology on the South American Pacific coast, it has long been theorized 
those objects shaped like arsenical copper axes actually served as currency 
(Fig. 5, B). These objects, known as ‘axe-monies’, were presumably produced 
by carefully calculating their dimensions to result in multiples of 5 grams 
(Holm 1966-1967, 138).

Recently, a sample of over 700 axes was measured and weighed to test 
the hypothesis of a quantal distribution of weight or dimensions. The results 
of CQA and Monte Carlo simulation (1,000 iterations, α=0.05) have demon-
strated that this hypothesis is not tenable, and the best quantum – which is 
around 4 grams and not 5 grams as previously assumed – is well below the 
established α level. It is not possible, therefore, to exclude that the observed 
peak is simply due to chance (Montalvo-Puente et al. 2023) (Fig. 4, C).

5.3 False negative results

The methodology is based on the idea that the Monte Carlo simulation 
helps establish the probability that the analysis result is random. However, 

Fig. 5 – A) Replica of a bronze sickle broken during an 
experiment of weight-regulated fragmentation (from Lago 
et al. 2023); B) specimen of Ecuadorian ‘axe-money’ in 
arsenical copper alloy (AD 600-1532) from the Pre-Colum-
bian Art Museum House, Quito (from Montalvo-Puente 
et al. 2023).
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there are some circumstances that can lead to a result that is not significant 
enough (low ϕ(q)) even in the presence of a dataset with a quantal distribu-
tion. A determining factor is, for example, the amount of data, especially 
in the presence of datasets characterized by statistical noise. A fundamental 
prerequisite for obtaining reliable results should be to have a large amount 
of data to analyze. Determining the minimum amount of data required is a 
problem that is challenging to solve through statistics, as it depends on the 
characteristics of the sample. For instance, bronze fragments of the European 
Bronze age are significant beyond the 0.05 α level threshold when analysing 
the entire published sample (n=1,397) (Ialongo, Lago 2021). By randomly 
subsampling the same dataset with a decreasing number of measurements 
and subjecting it to CQA and Monte Carlo simulation, it can be observed 
that the significance of the results diminishes each time. With smaller sample 
sizes, the best quantum is far from the α level. In this scenario, the limited 
amount of data may yield a false negative (Fig. 8).

Another example of how sample size influences analyses is provided by 
an archaeological experiment on weight-regulated fragmentation of some 
copper alloy sickles (Lago et al. 2023) (Fig. 5, A). From the breakage of 20 
sickles replica, 138 fragments were obtained, of which 117 fell within the 

Fig. 6 – CQA and Monte Carlo simulations of weight (in grams): Quantogram 
0. Bronze fragments from experimental weight-regulated fragmentation; Quan-
togram 1. Subsampling of archaeological fragmented sickles from European 
Bronze age hoards (n=117). Range (7-200). Range of quanta (4-16). Step: 0.02.
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value range of 7 to 200 grams. The goal of the experiment was to obtain 
fragments whose weight was consistent with certain multiples of 10 grams, 
attempting to simulate the fragmentation phenomenon observed in the Eu-
ropean Late Bronze age (Ialongo, Lago 2021). Although concentrations of 
data corresponding to multiple of 10 grams were observable by the anlyses, 
the CQA returned a peak at approximately 8.63 grams, whose ϕ(q) is well 
below the significance threshold set at α=0.05.

We compared the results of CQA and Monte Carlo simulations derived 
from the experimental fragmentation with a sub-sampling of the same size 
(n=117) of a dataset with 1,533 fragmented bronze sickles from archaeologi-
cal contexts (Lago et al. 2023) (Fig. 6). The comparison was performed using 
the compare_quantograms function integrated into our package (see § 4). It 
results that with the same amount of data, even the dataset of archaeological 
fragmented sickles – which, when analyzed in its entirety, exhibits a quantal 
configuration having 9.9 as best quantum and surpassing the significance 
threshold set at α=0.05 – does not appear to be quantally distributed. The higher 
peaks, corresponding to 8- and 11-grams ca., are similar but not the same as 
the established basic unit around 10 grams. Therefore, we can assert that an 
insufficient amount of data can yield incorrect results as well as false negatives.

5.4 False positive results

However, subsampling can also lead to false positive results. A few years 
ago, a sample of about 150 gold objects from the Bronze age in the British 
Isles and France had led to the hypothesis that these objects were used as 

Fig. 7 – CQA and Monte Carlo simulations of weight (in grams): A) British gold objects from the 
Bronze age – light range; B) British gold objects from the Bronze age – Heavy range. Range (A: 
1-60; B: 60-410). Range of quanta (A: 2-50; B: 10-100). Step (A: 0.1; B: 1).
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Fig. 8 – CQA and Monte Carlo simulations of weight (in grams): A) European Late Bronze age 
bronze fragments; B) sub-sampling (n=1,197) of European Late Bronze age bronze fragments; C) 
sub-sampling (n=997) of European Late Bronze age bronze fragments; D) sub-sampling (n=800) 
of European Late Bronze age bronze fragments; E) sub-sampling (n=600) of European Late 
Bronze age bronze fragments; F) sub-sampling (n=400) of European Late Bronze age bronze 
fragments. Range (7-200). Range of quanta (4-16). Step: 0.02.
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‘hackgold’ weighing in exchange economies (Rahmstorf 2019). By subjecting 
the weight of some of these objects (bar torcs, penannular bracelets, and dress 
fasteners) to CQA, some peaks in value were identified that exceeded the 5% 
α level set. More recently, the sample of gold objects weighed from the British 
Isles has greatly increased (n=863), and new analyses have been conducted. 
By increasing the sample size, the results of the CQA do not allow to exclude 
that the observed peaks are due to chance (Hermann 2022) (Fig. 7).

6. Discussion and final remarks

The CQA is the standard procedure to verify the existence of quantal 
patterns that may be hidden behind archaeological datasets, while the Monte 
Carlo simulation is a highly effective tool for assessing the significance of the 
results. Even though the rationale of the analysis has been explained in dozens 
of archaeological articles, yet its applicability remains somewhat underestimat-
ed. In fact, although the CQA is suitable for the analysis of any measurable 
phenomenon (e.g. area, volume, distance, etc.) in the archaeological field, it 
has had widespread application only in metrological studies on weight. In 
this particular context, it has provided the best possible tool for validating/
refuting various long-standing hypotheses (e.g. Petruso 1992; Pare 1999; 
Ialongo et al. 2021; Ialongo, Lago 2021; Hermann 2022; Montalvo 
et al. 2023). The analysis needs to be based on solid assumptions: precise 
measurements and large datasets; just as important are the criteria adopted 
in selecting the range to analyze and the quanta to test. If these premises are 
respected, the CQArchaeo package provides a precious free-to-use support 
for researchers who do not use programming languages.
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ABSTRACT

Cosine Quantogram Analysis (CQA) is a statistical analysis employed in archaeology for 
the study of numerical datasets with hypothesized quantal distribution. To verify thesignificance 
of the results, the analysis is often combined with the execution of Monte Carlo simulations. 
In this article, we present a freely downloadable Python package (CQArchaeo) that integrates 
CQA and Monte Carlo simulations in the same environment, making the analysis customizable 
in the main parameters. We provide a guide that enables the use of this tool even for researchers 
with limited experience in Python programming and demonstrate the applicability, functioning, 
and main limitations of the analysis on some archaeological datasets.
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