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Summary. — The Convolutional Neural Network (CNN), ResNeXt50, was used
to classify nuclear reactions measured in a gas-filled charged particle detector. This
active-target time-projection chamber, built by the University of Warsaw, is opti-
mised for studying photo-dissociation reactions using intense -beams. In particu-
lar, the "*O(y, @)'?C and '?C(~, 3) reactions were measured using y-beams at the
HI~S facility at Duke University. Reactions of interest were distinguished from other
background channels using the CNN. For this preliminary study, a small sample of
two hundred hand-classified events per category were used to train the model. This
was then used to classify an unseen data set comprising one hundred events in each
category. This method was extremely effective at removing background events and
could differentiate the two main reaction channels with 96% accuracy.
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1. — Introduction

The use of high-intensity v beams is a powerful technique both in astrophysics studies
and explorations of nuclear structure. In order to study the processes that govern the
evolution of stars, stellar modelling requires accurate knowledge of nuclear reaction cross
sections, which decrease rapidly at lower centre-of-mass energies due to the Coulomb bar-
rier. Since astrophysical energies are generally sub-Coulomb barrier, these correspond to
very low cross sections, inaccessible through even the most sophisticated modern exper-
imental approaches. Therefore, cross sections are typically measured at higher energies,
where the cross section is greater, and then extrapolated to astrophysical energies at the
Gamow peak using R-matrix theory.

Key reactions that occur in the core of a star are often direct o and p capture reactions,
(a,7) and (p,7). In experiments, the small cross sections that characterise these reactions
at low energies can be boosted significantly by capitalising on the principle of detailed
balance [1] and studying these reactions through their inverse photo-dissociation reac-
tions. The photo-dissociation cross section is directly related to the capture cross section
via the principle of detailed balance: o (v, a) = k2/2k2 x o(a,v) where ko = /2pFEen,
and hk, = hw/c = E,/c. This means that the photo-dissociation cross section can be
significantly larger than the capture cross section.

In astrophysics, the flagship case is determination of the 2C(a, )0 reaction cross
section through measurement of the inverse 10(v, a)'2C [2]. This technique has been
shown to offer several key advantages over measuring the reaction directly. In addition to
higher cross sections (~ 50 times larger in this case), y-induced reactions are characterised
by lower experimental backgrounds and different systematic uncertainties.

On the nuclear structure side, such photo-dissociation reactions are an ideal platform
on which to conduct precise measurements of exotic nuclear resonances. Selection rules
restrict the spin-parity of states that may be populated via 7 absorption, meaning this
technique is extremely useful for exploring regions of high level density. In the past, a-
particle clustering in 12C was explored via the '2C(y, a) reaction, using an Optical TPC
detector [3]. These experiments provided the first unambiguous measurement of the 2
rotational excitation of the Hoyle state [4] and its decay branching ratios [5]. The data
supported claims of Ds;, point symmetry in '2C as predicted by the Algebraic Cluster
Model [6] and new measurements at higher energies may provide evidence for further
rotational states in this nucleus.

In order for this experimental technique to be feasible, high-intensity, quasi monochro-
matic y-beams are required, as well as a sophisticated detection system that is able to
accurately measure the momenta of the charged reaction products. In this study, the
Warsaw active target TPC detector (Warsaw TPC) was used [7]. Although TPC de-
tectors offer many advantages, as discussed later, they produce large amounts of data.
A typical experiment generates upwards of 10 TB of data per week, which must be
processed to obtain charge deposition and spatial information. Convolutional Neural
Networks (CNNs) have recently shown excellent potential for automating the analysis
of particle TPC detector data, for tasks such as event reconstruction, classification and
particle identification [8].

Using Artificial Neural Networks for TPC data analysis is not a new concept, with
liquid Argon TPC analysis being approached this way as far back as 1995 [9]. Machine
Learning techniques in general have also been applied more recently at various facilities,
including TexAT [10], JUNO [11], the ATTPC [12] and NeuLAND [13], to identify par-
ticle tracks within the data and to reconstruct energy and vertex information. These
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techniques include boosted decision trees and using pre-trained deep neural networks
for vertex and energy reconstruction. Most recently, residual neural network (ResNet)
models were used successfully for event classification and reconstruction of 12C decay in
simulated data [8]. The work presented in this paper utilises the ResNeXt50 architecture
for classifying photo-dissociation reactions measured using the Warsaw TPC. Initially
the experimental facility and TPC detector are described. The types of data produced
by the TPC are then discussed, followed by a description of the filtering that is per-
formed on the data before inputting to the neural network. The ResNeXt50 architecture
is described and its performance for event classification is quantified.

2. — Experiment details

Intense, quasi mono-energetic photon beams were produced at the High Intensity -
ray Source (HIyS) of the Triangle Universities Nuclear Laboratory [14]. As depicted in
ref. [2], high energy gamma beams were generated through Compton back-scattering of
free electron laser (FEL) light from relativistic electron beams. The gamma beam energy
is controlled by the FEL wavelength and the electron energy. In 2022, new data were
acquired using beam intensities of ~ 5 x 10% /s with an energy spread of ~3%, at
nominal beam energies ranging from 8.6 to 13.9 MeV.

The Warsaw TPC [7] was used for charged particle detection. In the TPC, a low-
pressure gaseous CO4 active volume acts as both the target for the nuclear reactions and
as the medium for particle detection, via charge transport and subsequent amplification.
The TPC used in this work is the result of a programme led by the University of Warsaw
in collaboration with the University of Connecticut, and the Extreme Light Infrastructure
Nuclear Physics / IFIN-HH, Bucharest-Magurele, Romania. The detector comprises a
drift cage, which permits uniformity of the drift field with <1% variation. Electrons
generated through track ionisation drift in this field towards an anode plane and are
amplified by three 50 pm-thick Gas Electron Multiplier (GEM) foils [15] with 3 mm
separation. The amplified signals are collected by a segmented multi-layer PCB anode
and are processed using GET electronics [16]. A redundant, 3-coordinate system readout
is used, arranged along three independent axes oriented at 60° to each other. These
form three linear sets of strips with 1.5 mm pitch, that are labelled (U, V, W). This
arrangement allows the creation of virtual pixels on a 2D horizontal plane as a function
of time, provided that the topologies of the measured tracks are relatively simple, as is
the case for the data presented here. A set of example events may be seen in fig. 1.

The total collected charge, track lengths, interaction position, and dE/dxz of the
particles along each track may be used to differentiate reactions that occur inside the
TPC to good effect. These include the reactions of interest, °0(v, a)?C and *2C(~, 3a),
along with several background channels. The background reactions include, but are
not limited to: 7/180(vy, )3/MC, 160(y,p)'"N, and 0(v,n)'®0. Standard analyses
using the metrics described above perform well at separating the reactions. The aim
of this work is to demonstrate a modern Convolutional Neural Network (CNN) as a
complementary technique for reaction classification, with the possibility of increased
speed and convenience over conventional techniques.

3. — Methodology

By analysing photo-dissociation data collected with the Warsaw TPC at the HIyS
facility during a 2022 experimental campaign, this study demonstrates the effectiveness
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Fig. 1. — The manifestation of different categories of reactions in the U, V, W, t projections.

of machine learning-based classification through the use of a convolutional neural network
(CNN) in identifying general nuclear reaction topologies. A robust methodology that
leverages transfer learning has been established as an alternative approach for background
removal and classification of nuclear decays that are challenging to distinguish through
classical methods.

The data considered were sampled from a 13.9 MeV nominal v beam energy. The TPC
was operated with a sampling rate of 12.5 MHz, shaping time of 232 ns, and a pressure of
250 mbar. All data underwent the standard signal processing stages as outlined in ref. [7],
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where the raw waveforms were individually pedestal- and fixed pattern noise-corrected.
All events considered in the analysis had the same trigger delay. This study also applied
two further corrections: a gain normalisation across all channels and a deconvolution.
The channel-by-channel time deconvolution was implemented to account for the shaping
caused by the electronics [19]. The response functions were determined by using an
internal pulser with a known input signal and examining the corresponding output. A
comparison has been made of the classifier’s performance when analysing the corrected
data versus the non-corrected data.

As demonstrated in fig. 1, each recorded event is stored as a collection of three images,
which show the charge collection on a family of strips (U, V, W) on the vertical axis,
against drift time in 512 time bins on the horizontal axis. The number of channels is
264 for U, 376 for V and 378 for W. To eliminate remnant switching effects from the
read-write electronics, only signals from the first 490 time bins were considered. This
defines the length of our horizontal axis. The vertical axis is then zero-pad to create
three 490 x 490 pixel images. The maximum charge collected in any projection is used to
normalise the data, giving pixel values ranging from zero to unity. Finally, the normalised
images are stacked each into a different RGB channel, resulting in a single 490 x 490 x 3
image per event. An example event is shown in fig. 2.

The sample dataset used in this study was manually classified and reconstructed by
experts, with checks applied for consistency. These were then further checked for eligi-
bility and full containment within the TPC by placing fiducial cuts on the reconstructed
vertex distance from the beam, and a 10 mm maximum distance from any track endpoint
to the edge of the drift volume.

The training classes for the classification problem were defined as: (v, n), (7v,p), (v, a),
and (v,3a). No distinction was made between 3« decays that proceed via the ground
state of ®Be and first excited state, even though these types of events can manifest quite
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Fig. 2. — An example of the RGB image input to the CNN. This event is one of the 2C(y, a)
reactions that were ultimately mis-classified as '°0(v, a).
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differently in the data. This choice was made due to low statistics caused by a low 3«
reaction cross-section at the energy considered. Further event classes that sometimes
appear in the data include « particles from natural radioactivity and pile-up events,
which should be included as separate categories in future work.

Each class examined in this work consisted of 300 events. A 2:1 split was used to
train and validate the classifier, where 2/3 of each class were used for training and 1/3
(100 events) were reserved for validation.Transfer learning techniques leveraging a pre-
trained ResNeXt-50 model were employed, which has already been trained on a large
image database to be effective at detecting common visual features, such as edges and
curves. ResNeXt is a deep convolutional neural network architecture [17] that is based
upon the ResNet model, but uniquely incorporates groups of multiple parallel pathways
within each layer. This multi-path group structure enhances the model’s ability to learn
a broader range of more complex features [18]. This model was then fine-tuned using our
training data, allowing it to adapt and learn to extract our application-specific features,
which is typical in computer vision classification problems with low statistics. All specific
hyper-parameters used for the training of the model can be found in table I.

4. — Results and discussion

The performance of the model for both standard and time-deconvolved data is shown
in table II. The performance, when considering time-deconvolved data, shows an increase
in terms of precision, recall, and F1 score, which was achieved at epoch 4, where validation
accuracy first reached its maximum value.

Using the ResNeXt model to classify the validation set, 9% of neutron, proton, and
alpha particle events were correctly classified for the deconvolved data, as captured in
the confusion matrix of fig. 3. However, the classification performed less well for triple
alpha events (3a). Here, 96% were correctly classified, with 2% misclassified as single
alpha events. A lower 94% were correctly classified without the deconvolution. The
kinematics of 3o decays, where particles can emerge with a small opening angle, makes
certain distributions inherently difficult to distinguish from single alpha events in the
TPC. See fig. 2 for an example of such an event. To overcome this, training on larger

TABLE 1. — Model hyper-parameters.

Parameters Values
Loss Cross Entropy Loss
Optimiser Stochastic Gradient Descent
Learning Rate 0.001
Momentum 0.9
Batch Size 16

TABLE II. — Model performance.

Model Precision Recall F1 Score

Standard model 0.978 0.978 0.978
Deconvolved model 0.983 0.983 0.983
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Fig. 3. — The confusion matrix resulting from the classification of unseen time-deconvolved
data. Almost all (jy,n) and (7,p) are correctly classified. Two percent of *>C(y, @) reactions are
mis-classified as °O(y, a).

pre-classified datasets is required. A promising approach could be to train the network
on Monte-Carlo simulated data that accurately capture the physics of the events, as well
as background noise, and detector effects. The generation of sufficiently realistic training
data remains an area of active pursuit.

5. — Summary

The Convolutional Neural Network, ResNeXt50, was used to classify nuclear reactions
measured in the gas-filled Warsaw active-target time-projection chamber. This detector
was used to study photo-dissociation reactions of 0 and '2C using intense 7-beams
at the HIvS facility at Duke University. Reactions of interest were distinguished from
other background channels using ResNeXt50. For this preliminary study, a small sample
of two hundred hand-classified events were used to train the model, which was then
used to classify one hundred unseen events. This method was effective at identifying
background events with 99% accuracy and could differentiate two key reaction channels
with 96% accuracy. For this sample of events, time-deconvolved events were classified
most accurately.
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