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Summary. — Many-baryon forces play a crucial role in shaping the structure and
dynamics of many-baryon systems. Utilizing three-body correlation functions in
femtoscopy offers a promising tool for probing three-baryon forces. However, the dy-
namics of three-body systems necessary for obtaining these correlation functions re-
mains incompletely understood. In this study, we employ the continuum-discretized
coupled channels method, a precise and cost-effective three-body model, to explore
the influence of deuteron excitation to its continuum states on the deuteron-Z cor-
relation function. Our findings reveal that the deuteron-= interaction derived from
lattice quantum chromodynamics does not yield a bound state. Moreover, we de-
termine that the effect of deuteron excitation leads to less than a 10% increase in
the correlation function, suggesting the predominance of direct deuteron formation
through heavy-ion collisions. Overall, our work lays the groundwork for further
investigations aimed at elucidating many-baryon forces.

1. — Introduction

Three-baryon forces are a key to microscopically understand many-baryon systems
in terms of their interaction. As regards three-nucleon forces, few-nucleon systems offer
an opportunity to access their fundamental information, such as the low-energy con-
stants [1-3] of the chiral effective field theory [4-8]. In contrast, the three-nucleon force
in many-nucleon systems has attracted much attention since its impacts is drastic as
evidenced by, for example, the spin-parity inversion of the °B spectra [9], the spin-orbit
splitting [10-17], the drip-line determination of oxygen isotopes [10,15,18], the explana-
tion for masses and spectroscopy of medium-heavy nuclei [14,19-21], and the saturation
of nuclear matter [22-24].
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The importance of many-baryon force is not limited to nucleon systems but also those
with hyperons. Indeed, the three-baryon force among nucleon-nucleon-A systems plays a
crucial role on accounting for neutron stars that have a mass greater than the two-solar
mass [25].

One of the promising tools to study the baryon interaction is the correlation func-
tion since it contains the information of the interaction as a scattering wave of systems
considered (see eq. (1)). For instance, femtoscopic study of the nucleon-= (A-A) inter-
action through the investigation of the proton-Z~ correlation function revealed that this
interaction is moderately (weakly) attractive, albeit producing no quasibound (bound)
states [26].

Similarly, three-baryon interaction could be studied through three-body correlation
functions, which were recently observed by the ALICE Collaboration [27]. Also, these
data were theoretically analyzed within the hyperspherical harmonics and Faddeev tech-
niques [28,29]. However, our understanding of the dynamics of three-body systems,
pertaining to the three-body correlation functions, remains incomplete. In particular,
the formation of the deuteron in the deuteron-hadron correlation function is not clarified
as to whether it is due to direct production or final-state interaction [30].

In this study, we investigate the effect of the deuteron dynamical excitation on the
deuteron-=~ correlation function to clarify the mechanism of the deuteron formation.
Here, the deuteron dynamical excitation stands for the coupled channel among deuteron-
=~, proton-neutron-Z~ and neutron-neutron-Z° channels. This study is a necessary first
step towards studying nucleon-nucleon-Z interaction, although at the moment we did not
include three-body forces in our calculations for simplicity.

2. — Method

We briefly describe our theoretical framework to study the deuteron-= correlation
function. See ref. [31] for more complete expression on the method. Following the
Koonin—Pratt formula [32,33], the correlation function is computed by

(1) Cezla) = 3 [ ars(r) ol ()|

where g and R is the relative momentum and coordinate between the nucleon-nucleon
system and =, respectively. The index i specifies the nucleon-nucleon states, as explained
below. We adopt the source function & defined by

—3/2 R?
(2) S(R) = (47rb2) exp [_4()2} ,

with the source size b = 1.2 fm. Note that the results with different source size are
relegated to ref. [31]. We assume that S does not depend on i for simplicity.

The wave function wg ) describing the relative motion between the nucleon-nucleon
system and = is calculated by the continuum-discretized coupled channels method

(CDCC) [34-36] as

(3) v (r, R) = Z@ Ui (R).
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Fig. 1. — Schematic pictures showing the time reversal of the wave function. Within the outgo-
ing boundary condition denoted by the superscript (+), the deuteron exists in the “incident”
channel ¢ = 0 and various final channels are possible in the “exit” channel. In contrast, within
the incoming boundary condition denoted by (—), various scattering states from the source cor-
respond to initial channels, each of which goes to the observed channel ¢ = 0. For simplicity we
omit the presence of = in the pictures.

Here, ¥(+) is the total wave function of the three-body system. The nucleon-nucleon
relative wave function ¢; depends on 7, the relative distance between two nucleons, and
the subscript 7 identifies the discretized continuum states characterizes energy, spin, and
isospin of the nucleon-nucleon system. Also, the subscript 0 stands for the deuteron
channel, ¢ = 0, which corresponds to the observed channel in the correlation function.
The superscript (+) denotes that the wave function satisfies the outgoing boundary

condition, and hence, wi(O_ ) satisfying the incoming boundary condition is obtained as

the time reversal form of 1,/11(; ). The above explanation is schematically shown in fig. 1.

We use the Argonne V4’ potential [37] as the nucleon-nucleon interaction, while the
potential derived from the Lattice quantum chromodynamics simulation [38] is employed
for the nucleon-= interaction. We take into account the nucleon-nucleon continuum states
up to around 166 MeV, resulting in the 411 channels in solving the coupled-channels
equation.

As mentioned above, this work represents the initial exploration of the deuteron-=—
correlation function within the framework of a three-body model. Therefore, for the sake
of simplicity, we impose certain constraints; disregarding three-baryon forces, assuming
an i-independent two-body source function, accounting for Coulomb interaction in all
isospin channels, considering only s-wave states in all subsystems, presuming isospin
symmetry for baryon masses, and neglecting rearrangement channels. The incorporation
of these aspects falls within our future research scope.

3. — Results

First, we show the attractive nature of the deuteron-=" interaction from the correla-
tion function Cyz as displayed in fig. 2 as a function of ¢g. The red-solid line is the results
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Fig. 2. — Deuteron-= correlation function as a function of q. The red-solid line corresponds to
the results obtained with CDCC including the coupled channels effect, while blue-dotted line
is the one-channel results by including solely the deuteron channel. The contribution from the
pure Coulomb interaction is given by the black-dash-dotted line.

obtained by CDCC, while the black-dash-dotted line corresponds to those computed with
the Coulomb interaction only. Because the presence of the strong interaction enhances
Cy= with respect to the pure Coulomb case, we find that the deuteron-=" interaction
has the attractive nature. Despite the attraction, we obtained the negative value of an
s-wave scattering length (within the nuclear-physics convention [31]), indicating that the
interaction can form no bound states for the deuteron-=Z~ system. This weakly attractive
nature of the deuteron-=~ interaction in the strangeness S = —2 sector is qualitatively
consistent with that in the S = —1 sector. The deuteron-A interaction is attractive but
not sufficiently strong to form a bound state, deduced from an analysis of the deuteron-
A correlation function using the Lednicky-Lyuboshits approach with the effective range
expansion [39].

Next, we focus our attention on the coupled-channels effect on Cy=. The blue-dotted
line in fig. 2 is obtained by CDCC but taking into account the deuteron channel only
by neglecting all other continuum states. The coupled-channels effect is visible as an
increase of Cyz by less than 10%. Therefore, we can infer that the direct formation is
dominant within the present source function.

In ref. [31], we discussed the mechanism how the coupled-channels effect plays an
attractive role by investigating the distorted waves and coupling potentials. Furthermore,
the neutron-neutron threshold effect manifesting itself as a small bump of Cy= around
g ~ 60 MeV/c is argued in detail [31].
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4. — Conclusion and perspectives

We have calculated the deuteron-Z~ correlation function by means of CDCC, a precise
and cost-effective three-body model, with which we can take into account the channel
coupling among deuteron-=—, continuum proton-neutron-=-, and neutron-neutron-=°
channels. We have found that the deuteron-=~ has attractive nature but not strong
enough to form a bound state, the coupled-channels effect is less than 10% on the cor-
relation function, and the direct deuteron production is dominant in heavy-ion collision
considered here. As a future study, we plan to improve our calculations by including a
three-baryon force and nucleon-A-A channel, for instance.
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