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Summary.— In the study of heavy-ion collisions, two-particle correlation functions
(CF) give insights into the space-time characteristics of nuclear systems. Typically,
those characteristics are quantified with the so-called source function (SF) related
to CF through the Koonin-Pratt (KP) convolution formula. Deducing SF from CF
is, at the formal level, an imaging problem. Here, we use the Richardson-Lucy (RL)
optical deblurring algorithm, employed elsewhere in imaging problems, to extract the
SF from two-particle correlation function measurements. We apply the algorithm to
the deuteron-alpha (d–α) and proton-proton (p-p) correlation data. In addition, we
apply the Boltzmann-Uehling-Uhlenbeck (BUU) transport model to simulate the p-p
source in heavy-ion collisions at low incident energies per nucleon (E/A). Comparing
sources from BUU simulations with the RL algorithm results helps to understand
the impact of fast and slow emissions on the sources. Consequently, we propose
adding an analytically parametrized component to the BUU source to correct the
missing secondary decay emissions in the model. In illustrating our approach, we
rely on the p-p correlations measured in Ar + Sc reactions at E/A = 80 MeV.

1. – Introduction

Investigation of particle correlations in heavy-ion collision gives insights into the ge-
ometry and time development of the final stages of reactions [1-4], as well as phase-space
distributions [5]. The final features get quantified with the relative distribution of parti-
cle pairs in the reaction, also known as source function (SF). The latter is here a focus,
as a meeting point of the experiment and theory.

The correlation function is determined experimentally as the ratio of the probabil-
ity of detecting two particles simultaneously to the product of probabilities of detecting
single particles. Theoretically, it is approximated in terms of the so-called Koonin-Pratt
(KP) formula, which expresses CF as a convolution of SF and the square of the rel-
ative wave function. It is necessary to understand relative wave functions within the
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studied particle pairs to connect SF in the reactions to the correlation functions (CF).
These wave functions are obtained by solving the Schrödinger equation for the scattering
problem with nuclear potentials obtained by fitting measured scattering phase shift (see,
e.g., ref. [6]). Often, SF is taken as a parameterized Gaussian function and fitted by
comparing the KP formula to the measured correlation. Bias-free computation of the
source function from a correlation function represents an imaging problem that, like else-
where for imaging, invokes an inversion and thus may suffer from instabilities [7]. Here,
rather than applying an inversion directly, we take inspiration from optical deblurring,
which is an imaging problem, too. One successful strategy there that has already been
used in nuclear physics to restore decay energy spectra measurements [8] and cope with
detector inefficiencies and reaction-plane uncertainties [9] is the Richardson-Lucy (RL)
algorithm [10, 11] that relies on the Bayes theorem and follows an iterative procedure
to reach to a self-consistent solution. In a recent publication [12], we demonstrated
by only using the correlation measurements and discretized transfer function, or kernel
matrix (K), both positively defined as inputs, the RL algorithm can successfully restore
a positive source function of a deuteron-alpha (d−α) pair.

In this paper, we initiate our discussion by showcasing the application of the RL
algorithm to restore the source function from d−α correlations measured in 40Ar+27Al
reactions [13] (for additional details, readers are referred to ref. [12]). Next, we illustrate
how the RL algorithm can be employed in parallel with the proton-proton (p-p) source
function, computed using the Boltzmann-Uehling-Uhlenbeck (BUU) transport model, to
better understand the p-p correlations. This analysis involves assessing the contribution
of secondary decay emissions to the source function, which is absent in the BUU model’s
source (this subject will be discussed in detail in our upcoming paper) but is necessary
to reproduce the measured p-p correlations. Here, the p-p correlations we use were
measured in the Ar+Sc collision reaction at E/A=80 MeV [14].

The remainder of the paper is organized as follows: sect. 2 discusses the Koonin-Pratt
formula; sect. 3 covers the deblurring method and its application in restoring the d−α
source function. In sect. 4, we delve into the proton-proton source function from the
BUU model and compare it to the p-p source function restored using the RL algorithm.
Finally, we provide a summary in sect. 5.

2. – Two-particle correlations from Koonin-Pratt (PK) formula

Two-particle correlations are experimentally defined as the ratio of coincidence prob-
ability P2(p1,p2) and the product of single-particle probabilities P1(p1,2): C(q) =
P2(p1,p2)/

[
P1(p1)P1(p2)

]
, where p1 and p2 are particle momenta and q = μ(p1 − p2)

is the two-particle relative momentum. The correlation function is related to the source
function S at relative separation r = r1 − r2 at emission with the KP formula:

(1) C(q) = 4π

∫ ∞

0

dr r2 K(q, r)S(r) ≡
∫

d3r |Ψ(−)
q (r)|2 S(r) .

Here, in the absence of spin, the kernel K(q, r) is equal to the square of the scattering
wavefunction of particles 1 and 2, with outgoing boundary conditions. The normalization
is such that the wavefunction squared averages to 1 over r at large distances. In the
presence of spin, for a source independent of the spin directions, the kernel is equal
to the wavefunction squared with spin indices summed over in the asymptotic region
and averaged at the source location. It is common to use the wavefunction squared as



SOURCE FUNCTION FROM TWO-PARTICLE CORRELATIONS THROUGH DEBLURRING ETC. 3

a symbolic representation of the kernel, even in the case of spin. The kernel can be
expanded in Legendre polynomials PL [15]:

(2) K(q, r) =
1

2s+ 1

∑
L

(2L+ 1)AL(q, r)PL(cos θ) ,

where θ is the angle between q and r, s = 1 is the deuteron spin, and

AL(q, r) =

lmax∑
l=0

l′max∑
l′=0

(2l + 1)(2l′ + 1)

j=l+s∑
j=l−s

j′=l′+s∑
j′=l′−s

(2j + 1)(2j′ + 1)(3)

×
(

l l′ L
0 0 0

)2 {
l l′ L
j′ j s

}2

Re
[
il−l′ R∗

j′l′(q, r)Rjl(q, r)
]
.

Here, Rj� are radial wavefunctions, and the formula contains 3-j and 6-j symbols. When
averaging CF over the angle of q relative to the emitting source, a relation between
angle-averaged CF and angle-averaged SF emerges:

(4) C(q) = 4π

∫ ∞

0

dr r2 K(q, r)S(r) ,

where the isotropic kernel K stands for the r.h.s. of (2) with only the L = 0 term after
angle-averaging [6, 12].

The source function S(r) on the r.h.s. of (1) or (4) is the probability distribution of
particles 1 and 2 in their separation r in their center of mass, at the instant when they
separate from the rest of the system and leave for the detectors. For a d-α pair, we
obtain the radial wavefunctions in (3) and then the isotropic kernel K in (4) by solving
Schrödinger equations with potentials taken from ref. [6].

The left panel of fig. 1 displays the contour plot of the isotropic kernel K for a d–α
pair. Various features of the kernel can be seen there. The dip in kernel values at low q
is tied to the Coulomb repulsion. The ridge near r ∼ 7 fm is tied to nuclear attraction.
The peaks for q � 42 and 84MeV/c correspond to the resonances in the 3D3 state and
in the 2D1 and 2D2 states, respectively, with the peaks overlapping for the last two (see
ref. [6] for more details about interactions in these channels). The right panel shows d−α
correlations, obtained using the KP formula (4) with a Gaussian source characterized by
an exemplary radius R0 = 5 fm. The peaks around 42 and 84MeV/c reflect the structures
observed in K and attributed to the resonance states in 6Li at the energies of E = 2.18,
4.31, and 5.6MeV.

3. – Deblurring

When progressing from the side of correlation data to infer emission sources, we
employ optical deblurring [8, 9, 16] and now introduce the basics of that approach. The
blurring relation between a measured distribution g and a sought physical distribution G,
inaccessible directly due to a blurring, can be generally stated as

g(t′) =

∫
dtB(t′, t)G(t) .(5)
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Fig. 1. – d–α correlation in theoretical perspective. The left panel displays a logarithmic contour
plot in q–r for the isotropic kernel K(q, r) in the KP relation. The right panel displays the d−α
correlation function, obtained using the KP formula (4) with a Gaussian source.

Here, t′ is the argument in the measurement domain, t is the argument of the sought
distribution, and B(t′, t) is the blurring or response function describing how g responds
to a change in G. The task is to assess the function G. We achieve this following the RL
algorithm discussed next.

Under domain discretization, the relation in (5) takes the form of a matrix relation
between two vectors:

(6) gi =
∑
i

Bij Gj .

A deblurring method, such as RL, seeks to determine the function G when knowing g and
B. To arrive at the RL strategy, a backward relation between g and G is invoked, which
involves a response function D that is complementary to B [6]. Requiring fulfillment of
a Bayesian-form relation involving B and D, leads to iterations for G:

(7) G(n+1)
j = G(n)

j

∑
i Bji wi

gi

g
(n)
i∑

k Bjk wk
≡ G(n)

j A
(n)
j .

Here, n is the iteration index, A(n) is an amplification factor, and g
(n)
i =

∑
j Bij G(n)

j

is prediction for the measurement at n’th iteration. The weights w in (7) can focus
attention on the region of relative momenta in the correlation function that is dominated
by interactions within the particle pair, which is believed to test the source particularly

well. Typically, the iterations, indexed by n in eq. (7), stop when the ratio gi/g
(n)
i

approaches unity.
While the deblurring algorithms have been introduced for processing of optical images,

there is an obvious analogy in the mathematical structure of the optical problem and one
in the source inference, with the mapping: g ↔ C, B ↔ K, and G ↔ S. The success of
optical deblurring algorithms is largely due to all three quantities in the blurring relation
being positive definite, and this is the case with the KP formula.

The data that we use to infer the source function are the d-α correlations measured
at forward angles 0.7◦ < θ < 7◦ in 44MeV/nucl 40Ar+27Al collisions by Ghetti et
al. [13], displayed in fig. 2(a) as points. The narrow peak in the measurements around
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q ∼ 40MeV/c and a hint of a broad peak around q ∼ 84MeV/c underscore the com-
plementary utility of correlations in identifying resonances and other aspects of inter-
actions. That utility is particularly important when dealing with short-lived reaction
products [17]. The source function obtained by feeding the data from panel (a) into
eq. (4) and applying the RL algoritm is represented as a solid line in the panel (b). The
shaded regions in panel (b) represent the range of results obtained when resampling the
input data to (4) consistently with errors, cf. [8, 12]. The solid line and shaded regions
in (a) show results when the forward relation (4) is applied to the sources inferred under
data resampling. The relatively smaller size of errors in (a) for different q than for r in
(b) stems from the fact that the results in (b) come out correlated between different r.
For comparison, we show also a Gaussian source with a radius R0 = 4.5 fm. Notably, the
Gaussian source is normalized to integrate to λ = 0.49, missing probability, while the RL
sources integrate to 1. The two types of sources differ in the tails that are not exposed
in panel (b).

4. – p− p correlations: Transport model and deblurring

When a transport model describes the production of particular particle species, a
source may be directly constructed there. The Boltzmann-Uhlenbeck-Uehling (BUU)
simulation codes, utilized for intermediate-energy heavy-ion collisions, follow the evo-
lution of semiclassical single-nucleon phase-space distributions f = f(p, r, t) by solving
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Fig. 2. – (a) Deuteron-alpha correlation vs. relative-momentum magnitude q. Data from Ghetti
et al. measurements [13] from the E/A = 44MeV 40Ar+27Al reaction are represented by points.
Line and shaded regions display results behind the RL source restoration. (b) The solid line
with the shaded areas represents the source from RL deblurring of the data in panel (a). For
comparison, the dashed line represents a Gaussian source function with radius R0 = 4.5 fm [12],
multiplied by λ = 0.49.
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coupled one-body transport equations [18,19],

( ∂

∂t
+∇pε · ∇r −∇rε · ∇p

)
f = Icol(σin, {f}) .(8)

With ε = p2/2m+U(r,p), the left-hand side of eq. (8) is the one-body Liouville equation
in the presence of a self-consistent mean-field U . On the right-hand side, Icol is the
collision integral that accounts for changes in f due to nucleon-nucleon collisions [18,19].

The two-particle source function can be estimated from a BUU simulation following
the formula:

SBUU (r) =

∫
d3Rf(P/2,R+ r/2, t′) f(P/2,R− r/2, t′)[ ∫

d3r f(P/2,R, t′)
]2 .(9)

Here, r is the relative position within the particle pair, R = (r1 + r2)/2 is the center
of mass coordinate and P is the total momentum of the particles at the time when the
last particle is emitted, see [14] and references within. The phase-space distribution of
particles with momentum P/2, position r1,2, and at time t′ after both particles have
been emitted is described by a Wigner distribution f(P/2, r1,2, t

′) [14]. For practical
calculational purposes, the record for the late-time Wigner functions is taken at the
emission into vacuum, with the Wigner functions read off from the final emission functions

g with f(P/2, r, t′) =
∫ t′

−∞ dt g(P/2, r−P(t′ − t)/2m, t). The interplay of locations and
time evolution in arriving at the relative source shows how that source S tests the space-
time characteristics of the final stages of the reactions.

To obtain a p-p correlation function from a transport model, we simply replace S(r)
in eq. (4) by SBUU (r) of eq. (9). With an intention to confront the transport model [18]
with data [14], we simulate a central 36Ar+45 Sc collision at 80 AMeV. In comparing to
data it is usually of interest whether the comparison may provide access to the nuclear
Equation Of State (EOS). We test the sensitivity of SBUU to EOS in fig. 3 but find it weak
for the angle-averaged source in the momentum bracket considered for the system [14].

Two types of emissions are expected during a heavy ion collision: early, fast, largely
non-equilibrium emission and late sequential-decay emission [20]. Fast contributions to
the source largely reflect geometry, specifically the spatial extent over which particles

Fig. 3. – Two-proton source function from BUU simulation of the 36Ar +45 Sc collision at 80
MeV/nucleon and b = 1.9 fm, in the 200-400MeV/c range of total momentum. The two panels
display results for stiff (a) and soft (b) EOS with and without momentum-dependence. We do
not find much dependence on EOS in the angle-averaged sources in the particular system.
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Fig. 4. – Source (a) and correlation (b) for proton pairs at total momentum 200-400MeV/c in
central 36Ar +45 Sc collisions at 80MeV/nucleon. The triangles in (b) represent the correlation
data from ref. [14]. The shaded regions in (a), with a central line, represent the results from
deblurring the data in (b). The corresponding correlation results are indicated in (a). Finally,
BUU results are depicted in both panels in a direct form, with λ multiplication and tail addition.
For extra insight, the tail alone is represented in panel (a) and the inset there shows details in
the fall-off of the theoretical distributions.

with similar velocity may be found, limited by variation in collective velocity. On the
other hand, late contributions reflect the spread of times over which decays take place,
including possible multifragmentation. Fast emission contributes to the low-r region of
S while long-term emission contributes to high-r features. Notably, a BUU transport
model cannot describe the long-term emission and, thus, the high-r contributions to S.
In fig. 3, the sources indeed lack long-r tails, i.e., rapidly approaching 0 with an increase
in r, see also ref. [14].

In the current literature, researchers have attempted to correct the p-p correlation
function obtained from BUU simulations by multiplying the BUU source with a factor λ,
see refs. [6, 14, 20], similarly to the case of the Gaussian source in fig. 2. The underlying
presumption is that the faction (1−λ) of the experimental p-p pairs contains at least one
nucleon from the slow processes not there in the transport model. The correct behavior
of the correlation function at high q is recovered by constructing the correlation function
for the comparison to data as C = λCBUU + (1− λ), where CBUU is obtained with the
source before reduction.

Here, we propose to augment the procedure in confronting the transport prediction
to data by supplementing the transport source with an exponential representing the
secondary-decay contributions:

S(r) = λSBUU (r) +
1− λ

96πB5
r2 exp(−r/B) ,(10)

where λ and B are adjustable parameters. The idea is to capture the fraction (1 −
λ) of pairs to which the late emission contributes and the characteristic source fall-off
associated with that contribution.

The transport model with and without the late-state emission addition, correlation
data, and deblurring for central 36Ar+45 Sc collisions at 80MeV/nucleon are confronted
with each other in fig. 4. The data [14] for p-p pairs from the total momentum range
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200-400MeV/c are represented with triangles in panel (b). Source results from the RL
deblurring of the data are shown in panel (a), and the corresponding correlation results
are shown in (b). Finally, transport results are represented in both panels. Since there is
little difference between the sources for soft and stiff EOSs, we chose the stiff momentum-
independent EOS as an example. We show three variants of transport results for a
source directly taken from the BUU calculation, a source reduced by λ, and an added
long-emission tail. We use λ = 0.4 and B = 4 fm in eq. (10).

Using the λ reduction alone, as typical for the literature, we obtain consistency be-
tween the RL restored source and BUU up to r ∼ 10 fm, but not above, and consistency
between the theoretical correlation function and data from 14MeV/c on. We get con-
sistency at higher r and lower q with tail addition. The grasp of physics is much better
with the tail, even though we do not particularly optimize those added parameters.

5. – Summary

We discussed using the RL algorithm to infer the source functions for d–α and p–p
pairs from correlations measured in Ar+Al at 44 MeV/nucl and Ar+Sc at 80 MeV/nucl
collisions, respectively. The inferred sources exhibit tails at large separations between
the particles that can be attributed to longer-term emissions from the systems. When
carrying BUU transport calculations of proton emission, we find a relatively compact
source for proton pairs. However, we find that we can get a reasonable consistency
between the calculated source and correlation function if we supplement the BUU source
with a phenomenological tail representing contributions to the source from long-term
emissions absent from BUU. For more details about application of the RL algorithm to
correlations, we refer the readers to refs. [8, 9, 12].
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